如图,在△ABC中,角C=150°,AC=4,tanB=八分之一

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 02:06:07
如图,在△ABC中,角C=150°,AC=4,tanB=八分之一
如图,RT三角形ABC中,角C=90,

证明:因∠CAD=∠BAE,∠C=∠ABE=90°故△ACD∽△ABE故AC/AB=CD/BE即AB*CD=AC*BE因∠EBF+∠ABC=90°=∠ABC+∠BAC故∠EBF=∠BAC又∠F=∠C故

如图,在三角形ABC中,角C=90度,角CAB=60度

由题意可知BD=2DE=10cmCD=DE=5cm所以BC=CD+BD=5+10=15cm

如图,在Rt△ABC中,∠C=90°.根据题回答

(1)tan角ABC=tan角ADC(2)2tan角ABC=tan角ADC(3)n角ABC=tan角ADC

如图,在△ABC中,∠C=90度.

(1)(2)连接BP.∵点P到AB、BC的距离相等,∴BP是∠ABC的平分线,∴∠ABP=∠PBC.又∵点P在线段AB的垂直平分线上,∴PA=PB,∴∠A=∠ABP.∴∠A=∠ABP=∠PBC=13×

如图,在Rt三角形ABC中,角C=90度,CB=CA

∠C=90°CB=CA=a勾股定理AB=√(a²+a²)=√2a

已知:如图,在Rt△ABC中,角C=90°,BC=4 AC=8急!

de=x,Δade与Δabc相似,ae/8=x/4,ae=2x,ce=8-2xy=x*(8-2x)=8x-2x^2(0

如图,在Rt△ABC中,角C=90°,BC=a,AC=b,求△ABC的内切圆圆O的半径

=1/2(BC+AC-AB)用的是切线的性质再问:好吧..没有过程吗?

如图,在△ABC中,∠C=90°,sinA=45,AB=15,求△ABC的周长和tanA的值.

在Rt△ABC中,∠C=90°,AB=15sinA=BCAB=45,∴BC=12,AC=AB2−BC2=152−122=9,∴△ABC的周长=AB+AC+BC=36,tanA=BCAC=43.

如图在三角形ABC中,角C=90°,角A=22.5°.

连接BF,根据图可解∵∠A=22.5°且EF为垂直平分线,∴得∠A=∠FBA=22.5°,∠FBC=45°又∵∠C=90°,且∠CBF=∠CFB=45°∴BF=√2FC又∵BF=AF∴AF=√2FC分

题:如图,在三角形ABC中,角ABC=2角C,B

∠CBD+∠C=∠ADB∠CBD=2∠C=2∠CBD又因为∠A=∠A所以▲ADB≌▲ABC所以AD:AB=AB:CD=BD:BC

如图,在△ABC中,∠BAC=60°,∠C=45°,AD是△ABC的角平分线,求∠ADC的度数

在三角形ABC中,∠BAC=60°AD是△ABC的角平分线所以∠DAC=30°又因为∠C=45°由三角形内角和为180°所以∠ADC=180°-∠DAC-∠C=180°-30°-45°=105°

如图,已知在直角三角形ABC中,在角C=90°

是真命题.AB=2BC, ∠A=∠C-∠B=30°.∠C=90°所以三角形ABC是直角三角形.再问:�ش�̫�

如图 在△ABC中,∠C=2∠B ,AD是△ABC的角平分线.

延长AC到E使得CE=CD,连接DE,用三角形全等

如图,在△ABC中,∠B=2∠C,AD是△ABC的角平分线,∠AED=2∠C,

证明:∵AD是△ABC的角平分线,∴∠BAD=∠EAD,∵∠B=2∠C,∠AED=2∠C,∴∠B=∠AED,在△ABD和△AED中,∠BAD=∠EAD∠B=∠AEDAD=AD,∴△ABD≌△AED(A

已知;如图,在三角形abc中,角c=90度,求证,点abc在同一个圆上

取AB中点E,连接EC∵E为AB中点且△ABC为直角三角形∴AE=BE=1/2AB,CE=1/2AB(直角三角形斜边上的中线等于斜边的一半)∴AE=BE=CE∴A,B,C三点在以E为圆心的圆上

如图 在△abc中∠acb=90°ac=bc=1 将△abc绕点c逆时针旋转角a(0°

用正弦定理BD/sina=BC/sinD,a=60°,三角形BCD中角D=180°-60°-45°=75°.带入数据可得BD=  如果没学过该定理,那么可以从C点作一条垂直于AB的

如图,在Rt△ABC中,角C=90°

过B作BE⊥AD交AD的延长线于E在直角△ACD中CD=6∠ADC=45求出AC=6AD=6倍根号2在直角△ACB中由∠B的正弦=3/5得AC:AB=3/5得AB=10由勾股定理得BC=8∴BD=8-

已知:如图,在三角形abc中,角c=90度,ab的垂直平分线

已知:如图,在三角形ABCc中,∠C=90度,AB的垂直平分线交BCc于D,如果∠CAD:∠DAB=1:2,求∠B的度数∵DE垂直平分AB∴∠B=∠DAB∵∠CAD:∠DAB=1:2∠CAD+∠DAB