如图,在△ABC中,角C=90°,角B=30°.[1]作角CAB的平分线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:19:23
如图,在△ABC中,角C=90°,角B=30°.[1]作角CAB的平分线
如图在直角三角形ABC中角C等于90度AC等于BC

作DF//AC,交AB于F∵AC=BC,∠C=90°∴∠CAB=∠B=45°∵DF//AC∴∠DFB=∠CAB=45°∴∠DFB=∠B=45°∴DF=BD∵DE⊥AB∴△DEF是等腰直角三角形∴DE=

如图,在三角形ABC中,角C=90度,角CAB=60度

由题意可知BD=2DE=10cmCD=DE=5cm所以BC=CD+BD=5+10=15cm

如图,在Rt△ABC中,∠C=90°.根据题回答

(1)tan角ABC=tan角ADC(2)2tan角ABC=tan角ADC(3)n角ABC=tan角ADC

如图,在直角三角形ABC中,角C=90度,CB=CA=a,求AB的长.

我来回答!再问:回答啊再答:AB=√(a2+a2)=√2a再问:过程再答:采纳,亲再问:过程都没有再答:等一下再答: 再问:还有其他方法吗?我还没有学勾股定理再答:没有其它方法!无论谁做都这

如图在rt三角形abc中,角c=90度,ab等于10厘米.

题目:如图,在RT△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s..同时点Q从点B出发沿B-C-A方向向点A运动,速度为2cm/s,

如图,在△ABC中,∠C=90度.

(1)(2)连接BP.∵点P到AB、BC的距离相等,∴BP是∠ABC的平分线,∴∠ABP=∠PBC.又∵点P在线段AB的垂直平分线上,∴PA=PB,∴∠A=∠ABP.∴∠A=∠ABP=∠PBC=13×

如图,在Rt三角形ABC中,角C=90度,CB=CA

∠C=90°CB=CA=a勾股定理AB=√(a²+a²)=√2a

已知:如图,在Rt△ABC中,角C=90°,BC=4 AC=8急!

de=x,Δade与Δabc相似,ae/8=x/4,ae=2x,ce=8-2xy=x*(8-2x)=8x-2x^2(0

一道初二的几何题{如图,在三角形ABC中,角C=90度……}

∵DE垂直平分AB∴AD=BD∵CD﹕BD=3﹕5∴CD﹕AD=3﹕5∴CD﹕(15‐CD)=3﹕5∴CD=45∕8

如图在三角形ABC中,角C=90°,角A=22.5°.

连接BF,根据图可解∵∠A=22.5°且EF为垂直平分线,∴得∠A=∠FBA=22.5°,∠FBC=45°又∵∠C=90°,且∠CBF=∠CFB=45°∴BF=√2FC又∵BF=AF∴AF=√2FC分

已知,如图,在△ABC中,∠C=90°.CD⊥AB,AE平分∠CAB.

由题意知:∠eab+∠cfe=90°∠cae+∠aec=90°∵∠cae=∠eab∴∠cef=∠cfe

如图,已知在直角三角形ABC中,在角C=90°

是真命题.AB=2BC, ∠A=∠C-∠B=30°.∠C=90°所以三角形ABC是直角三角形.再问:�ش�̫�

如图,在△ABC中,∠ACB=90°,点E为AB中点,连接C

解题思路:要证明四边形ACEF是平行四边形,需求证CE∥AF,由已知易得△BEC,△AEF是等腰三角形,则∠1=∠2,∠3=∠F,又∠2=∠3,∴∠1=∠F,∴CE∥AF解题过程:答案见附件最终答案:

如图 在△ABC中,∠C=2∠B ,AD是△ABC的角平分线.

延长AC到E使得CE=CD,连接DE,用三角形全等

如图,在△ABC中,∠C=90°,DE垂直平分AB,交AC于

解题思路:本题是基础题,根据垂直平分线的性质及三角形内角和求解解题过程:解:设∠ABD=x°,∵∠ABD:∠ABC=1:2,∴∠ABC=2x°,∵DE是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD

已知;如图,在三角形abc中,角c=90度,求证,点abc在同一个圆上

取AB中点E,连接EC∵E为AB中点且△ABC为直角三角形∴AE=BE=1/2AB,CE=1/2AB(直角三角形斜边上的中线等于斜边的一半)∴AE=BE=CE∴A,B,C三点在以E为圆心的圆上

如图,在Rt△ABC中,角C=90°

过B作BE⊥AD交AD的延长线于E在直角△ACD中CD=6∠ADC=45求出AC=6AD=6倍根号2在直角△ACB中由∠B的正弦=3/5得AC:AB=3/5得AB=10由勾股定理得BC=8∴BD=8-

已知:如图,在三角形abc中,角c=90度,ab的垂直平分线

已知:如图,在三角形ABCc中,∠C=90度,AB的垂直平分线交BCc于D,如果∠CAD:∠DAB=1:2,求∠B的度数∵DE垂直平分AB∴∠B=∠DAB∵∠CAD:∠DAB=1:2∠CAD+∠DAB