如图,在○o中,直径cd⊥弦ab于点m,连接ac,ob

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:25:15
如图,在○o中,直径cd⊥弦ab于点m,连接ac,ob
如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P 是弧CAD上一点(不与C,D重合),求证:

⑴设弧CAD为劣弧.∵AB⊥CD,∴∠OBC=∠OBD,∵OB=OC=OD,∴∠OCB=∠OBC=∠ODB=∠OBD,∵∠P+∠CBD=180°(圆内接四边形对角互补),而∠COB+∠COB+∠OCB

如图,在⊙O中,直径AB⊥弦CD,E为垂足,AE=4,CE=6,求⊙O的半径.

连接OB,设⊙O的半径是R,∴CD⊥AB,CD过O,∴AB=2AE=2BE,AE=BE=4,在Rt△OBE中,由勾股定理得:OB2=BE2+OE2,即R2=42+(R-6)2,R=133,答:⊙O的半

如图,在⊙O中,直径AB=10,弦CD⊥AB,垂足为点E,若OE=3,则CD=______.

连接OC,∵直径AB=10,∴OC=12AB=5,∵CD⊥AB,OE=3,∴CD=2CE,在Rt△OCE中,CE2+OE2=OC2,即CE2+32=52,解得CE=4,∴CD=2CE=2×4=8.故答

如图,两个半圆中,小圆的圆心O'在大⊙O的直径CD上,长为4的弦AB与直径CD平行且与小半圆相切,那么圆中阴影部分面积等

连接OB,作OP⊥AB于P.阴影部分的面积=12π•OB2-12π•OP2=12π(OB2-OP2)=12π•BP2=2π.再问:有图了,帮帮忙,谢谢!

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P 是弧CAD上一点(不与C、D重合),

因为CD和AB是垂直的,AB是直径平分CD所以2∠COB=∠CPB,2∠DPB=∠DOB因为弧BD=弧CB,所以∠COB=∠DOB因为2∠CPB=2∠BPD=∠COB所以∠CPD=∠COB∠CP’D+

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.

(1)∠CPD=∠COB.…(1分)理由:如图所示,连接OD.…(2分)∵AB是直径,AB⊥CD,∴BC=BD,…(3分)∴∠COB=∠DOB=12∠COD.…(4分)又∵∠CPD=12∠COD,∴∠

已知 如图,在圆O中AB、CD是两条直径,弦AE//CD.求证弧BE=2弧AC

连结BC∵AE//CD∴∠COA=∠BAE而∠COA=2∠CBA∴∠BAE=2∠CBA∴弧BE=2弧AC

如图在⊙O中,C为ACB的中点,CD为直径,弦AB交CD于P,又PE⊥CB于E,若BC=10,且CE:EB=3:2,求A

∵BC=10,且CE:EB=3:2,∴CE=6,BE=4,∵C为ACB的中点,CD为直径,∴CD⊥AB,∴PB=PA,∠BPC=90°,∵PE⊥BC,∴∠BEP=90°,∵∠EBP=∠PBC,∴△BE

如图,在圆O中,弦CD与直径AB垂直于H点,E是AB延长线上一点,CE交圆O于F点

(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD

因为同弧对应的圆周角,等于圆心角的一半,而∠COD是劣弧CD所对的圆心角,∠CPD是同一劣弧CD所对的圆周角,因此∠CPD=1/2∠COD;又CD垂直于AB,故∠COB=1/2∠COD,因此∠CPD=

如图,在圆O中,直径AB与弦CD相交,分别过点B、O、A向弦CD做垂线,垂足分别为E、F、G.求证:CE=DG.

证明:∵OF⊥CD∴CF=DF(垂径定理)∵BE⊥CD,AG⊥CD∴BE//OF//AG∴EF/FG=BO/AO∵BO=AO∴EF=FG∴CF-EF=DF-FG即CE=DG

已知,在圆O中,直径AB⊥弦CD,E为垂足,AE=4,CE=6,求圆O的半径,如图

连接CO,设半径CO=R.则OE=OA-AE=R-4.OE^2+CE^2=CO^2,即(R-4)^2+36=R^2,R=6.5

如图所示,在圆O中,CD是直径,AB是弦,AB⊥CD于M,

因为AB⊥CD,AM=½AC所以角MAC是30度连接CAOA则角AOD=角CAO+角ACO=60度所以AO=AM除以根号3再乘以2=2倍根号3(有一个角是30度的直角三角形中)所以CD=

如图,在⊙O中,直径AB⊥弦CD于点M,AM=18,BM=8,求CD的长.

连接OC,∵AM=18,BM=8,∴半径OC=OA=OB=13,∴OM=5,∵直径AB⊥弦CD于点M,∴CD=2CM=2DM,在Rt△OCM中,由勾股定理得:CM=132−52=12,∴CD=24.

如图,在圆O中,AB=AC,AD是圆O的直径.试判断BD与CD

∵AD是直径∴弧ABD=弧ACD∵AB=AC∴弧AB=弧AC∴弧ABD-弧AB=弧ACD-弧AC即弧BD=弧CD∴BD=CD

如图 在圆o中 cd是直径 ab是弦ab⊥cd于M,OM=3,DM=2,求弦AB的长

OM平方+AM平方=OA平方AM平方=5*5-3*3=16AM=4AB=AM*2=4*2=8弦AB的长等于8.

如图,在图心O中,CD是直径,弦AB⊥CD,垂足为E,CD=15cm,OE:OC=3:5,求弦AB的长和AC的长,

连接OA∵CD=15cm,则OA=OC=7.5cm,∵OE:OC=3:5∴OE=4.5cm,CE=3cm根据垂径定理AB=2AE,在RT⊿OAE中:AE²=OA²-OE²

如图,在圆O中,如果作两条互相垂直的直径AB.CD,那么弦AC是圆O内接正四边形的一边.如果以点A为圆心,圆O的半径为半

AE=OE=AO三角形AOE为正三角形,角AOE=60度,角COE=30度,角FOE=120度则AE,CE,EF分别是圆O的内接六边形,正十二边形,正三角形的一边