如图,在三棱柱A-BPC中,AP垂直PC,AC垂直BC,M为AB中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:26:24
证明:∵F是棱BB1上的中点,D 是A1B1中点,∴A1B∥DF∵DF⊂面C1DF,A1B⊄面C1DF∴A1B∥面C1DF.
∠BPC>∠A证:连接AD,并延长AD交BC与E∵三角形ADC中,∠EDC是外角∴∠EDC>∠DAC(三角形的一个外角大于不相邻的任意一个内角)∵三角形ADB中,∠EDB是外角∴∠EDB>∠DAB(三
1)因为A1E比EB=A1F比FC所以EF//BC所以EF1EF//平面ABC(2)因为A1D⊥B1CA1D⊥CC1所以A1D⊥平面BB1C1C又因为A1D属于面A1FD所以平面A1FD垂直于平面BB
解题思路:一条线和一个平面中一条直线平行就说线平行面。解题过程:
证明1:由题意可知,在平面ACC1A1上,直线AF∥直线C1F1,且直线AF=直线C1F1,所以四边形AFC1F1为平行四边形,即直线AF1∥直线FC1,所以直线FC1∥平面AF1B1同理,在平面F1
1.∵AC⊥面BB'C'C∴AC⊥CC',AC⊥B‘C又BC⊥CC'∴CC'⊥面ABC∴三棱柱是直三棱柱又BC=CC'=a∴BB'C'C是正方形∴BC'⊥B'C又AC⊥BC'∴BC'⊥面AB'C∴BC
过C'做A'C'的垂线,垂足为O,连接B'O,两异面直线的所成的角,即AB'与面ABC所成的角,即角因为是正三棱锥,所以,C'O=1/2,所以sin角B'OA等于1/2,由图可得,角B'OA为锐角,所
(Ⅰ)证明:如图,已知AA1⊥平面ABC,BC⊂面ABC,∴AA1⊥BC,又已知AB⊥BC,且AB∩AA1=A,∴BC⊥平面AA1BB1,而BC⊂面A1BC,∴平面A1BC⊥面A1ABB1;(Ⅱ)过点
改用向量的方法,ef与A1B1没有直接联系必须借助其他的东西来证明
证明:如图,延长BP与AC相交于点D,在△ABD中,∠1=∠A+∠ABP,在△CPD中,∠BPC=∠1+∠ACP,∴∠BPC=∠A+∠ABP+∠ACP.
延长BP与AC交于D点,∠BPC是△PDC外角所以∠BPC>∠BDC而∠BDC是△ABP的外角,所以∠BDC>∠A故∠BPC>∠A.
p是becf的交点吧是△bpc的外角=½(∠c+∠b)=½(180°—∠a)=90°--½∠A然后∠bpc=180°-∠bpf=90°+½∠A根据题目中的关系来
四边形内角和为:(4-2)×180°=2×180°=360°在四边形ADPE中:角A+角DPE+90+90=360所以角A+角DPE=180又因为角DPE=角BPC所以角A+角BPC=180即角BPC
∵在△ABC中,∠A=50°,∴∠ABC+∠ACB=180°-50°=130°.∵BP平分∠ABC,CP平分∠ACB,∴∠PBC+∠PCB=12(∠ABC+∠ACB)=12×130°=65°,∴∠BP
在四边形ADPE中,角A=50度,角ADP=角AEP=90度,所以角DPE=360度-50-2*90=130度所以角BPC=角DPE=130度
证明:(1)∵AB=AC,D为BC的中点∵E为AB的中点,连接CE交AD于O,连接FO,∴COCE=CFCC1=23∴FO∥EC1(2分)∵FO⊆平面AFD,C1E⊄平面AFD(4分)∴C1E∥平面A
Ⅱ 作A1M⊥B1C1,则A1M⊥BCC1B1﹙∵A1B1C1⊥BCC1B1﹚作A1N⊥BC1,则MN⊥BC1﹙三垂线﹚ ∠A1NM=α是A1-
∠BPC>∠A证:连接AD,并延长AD交BC与E∵三角形ADC中,∠EDC是外角∴∠EDC>∠DAC(三角形的一个外角大于不相邻的任意一个内角)∵三角形ADB中,∠EDB是外角∴∠EDB>∠DAB(三
(Ⅰ)证明:因为AC=BC,D是AB的中点,所以CD⊥AB.由已知,三棱柱ABC-A′B′C′是直三棱柱,所以平面ABC⊥平面ABB′A′.所以CD⊥平面ABB′A′.又因为AB′⊂平面ABB′A′,