如图,在三棱柱ABC-A1B1C1中,平面A1ACC1 平面ABC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:25:38
证明:(I)取AB的中点M,∵AF=14AB,∴F为AM的中点,又∵E为AA1的中点,∴EF∥A1M在三棱柱ABC-A1B1C1中,D,M分别为A1B1,AB的中点,∴A1D∥BM,A1D=BM,∴A
△CDE的面积不等于CD*DE/2吗CD垂直于平面ABB1A1,所以CD垂直于DE
由题:设面积AEF为s1,ABC=A1B1C1=s,三棱柱高位h;V((AEF)-(A1B1C1))=V1;V((BCFE)-(B1C1)=V2;总体积为:V计算体积:V1=1/3*h*(s1+s+√
解题思路:一条线和一个平面中一条直线平行就说线平行面。解题过程:
第一题:通过面面平行证明线面平行找B1C1中点H,连接MH,NH因为M,H分别为A1B1,B1C1中点所以MH//A1C1又因为A1C1属于面ACC1A1MH不属于面ACC1A1所以MH//面ACC1
改用向量的方法,ef与A1B1没有直接联系必须借助其他的东西来证明
1向量BN=向量AB+向量AN(向量BN)平方=(向量AB)平方+(向量AN)平方+2(向量AB)*(向量AN)=2+1+0=3所以,可得BN=根号3.2向量BA1*向量CB1=(向量BB1+向量B1
过B作AC垂线交于D,连接C1D,角BC1D即为所求.tanBC1D=二分之根号三/二分之根号十七,再求反函数.
/>题目应是这个:如图,在直三棱柱ABC-A1B1C1中,E、F分别是A1B、A1C的中点,点D在B1C1上,A1D⊥B1C &n
证明:(1)因为三棱柱ABC-A1B1C1是正三棱柱,所以C1C⊥平面ABC,又AD⊂平面ABC,所以C1C⊥AD,又点D是棱BC的中点,且△ABC为正三角形,所以AD⊥BC,因为BC∩C1C=C,所
(1)取AB的中点F,连接EF,CE,CF因为三角形ABC为正三角形,F为AB的中点,所以CF垂直于AB又因为EF垂直于AB所以AB垂直于平面CEF,所以AB垂直于CE(2)V=2√3/3再问:货不对
需要求证的应该是:CE∥平面A1BD1. 若是这样,则方法如下:令A1B的中点为F.∵ABC-A1B1C1是三棱柱,且AA1⊥平面A1B1C1,∴BB1=CC1、BB1∥D1C1.∵E、F分别是A1
由于是直棱柱,则C1M⊥AA1,又由于A1C1=B1C1,则C1M⊥A1B1,从而C1M⊥平面AA1B1B.易证C1M//CN,C1M//平面CB1N,由于四边形AMB1N是平行四边形,则AM//B1
过B作截面BA2C2∥面A1B1C1,分别交AA1,CC1于A2,C2.如图2,则原几何体可视为四棱锥B-ACC2A2与三棱柱A1B1C1-A2BC2的组合体.作BH⊥A2C2于H,则BH是四棱锥的高
(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,∴AA1⊥平面ABC.(II)由AC=4,BC=5,AB=3.∴AC2+AB2
(1)证法一:由直棱柱性质得AA1⊥平面A1B1C1,又∵C1M平面A1B1C1,∴AA1⊥MC1.又∵C1A1=C1B1,M为A1B1中点,∴C1M⊥A1B1.
中点时因为ACBC长为一AB为根号二AA1为根号二所以AA1B1B为正方形链接a1b因为AA1B1B为正方形所以AB1垂直A1B因为D为中点F为中点所以A1B平行于DF所以DF垂直于AB1因为DF属于
(1)证明∵正三棱柱∴BC//=B1C1∵BD=BC∴BD//=B1C1∴四边形BDC1B1是平行四边形∴BC1//DB1∵DB1在面AB1D内∴BC1//面AB1D(2)∵正三棱柱∴BB1⊥面ABC
(1)证明:∵ABC-A1B1C1是直三棱柱,∴A1C1=B1C1=1,且∠A1C1B1=90°.又D是A1B1的中点,∴C1D⊥A1B1.∵AA1⊥平面A1B1C1,C1D⊂平面A1B1C1,∴AA