如图,在三角形ABC中,AD=DB,AE:EC=2:3,甲乙两部分的面积比是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:33:32
如图,在三角形ABC中,AD=DB,AE:EC=2:3,甲乙两部分的面积比是
已知如图在三角形ABC中AD垂直BC于D求证AD+BD=CD

证明:在CD上取DE=DB,连接AEAD⊥BC,∠ADB=∠ADE=90BD=ED,AD=AD△ADB≌△ADE.所以AE=AB,∠AED=∠B=2∠C因为∠AED为△ACE外角,所以∠AED=∠C+

如图,在三角形abc中,已知de平行bc,ef平行dc,求证 ad^2=ad*af

题目写错了吧?ad^2=ad*af那不是ad=af了?再问:那是你以前问得问题啊,不过现在已经解决了,谢谢

如图在三角形ABC中,角BAC等于90度,AB=AC=a,AD是三角形ABC的高,求AD的长

用等面积法其中直角对的边为√2a所以0.5AB*AC=0.5AD*BC√2a/2

如图,在三角形ABC中,角BAC=90度,AB=AC=a,AD是三角形ABC的高,求AD的长

AD是三角形ABC的高,又是∠BAC的平分线所以:∠ADB=90且AD=BD所以:AD平方+BD平方=AB平方=a平方即AD=a*/根号2

如图,在三角形ABC中,AB=3,AC=5,AD是边BC上的中线,AD=ED=2,求三角形ABC面积.

因为三角形CED与ADB为直角三角形又AD=DE,CD=DB根据直角三角形斜边直角边定理三角形CED与ADB全等在直角三角形ACE中CE^2=5^2-4^2=3^2,所以CE=3,所以AB=CE=3三

、如图在三角形ABC中,AD是中线,

延长AD到E,使DE=ADABD全等于CEDCE=3AE=4AC=5所以角AEC=90度DE=2CB=2CD=2倍的根号13

如图,在三角形ABC中,AD,AB为高DF=DC求证AD=BD

. 已知△ABC中,AD、BE为高,AD,BE交于F点,DF=DC,求证:AD=BD证明:∵AD、BE为高∴∠ADC=∠BEC=90°,∴∠ADC-∠C=∠BEC-∠C,即∠CAD=∠EBD

如图,在三角形ABC中,∠BAC=90度,AD⊥BC,

因,角BAC=90度,AD垂直BC,角ADB=角ADC=90度,所以,角ABD=角DAC=90度-角C.因,BE平分角ABC,角MBD=1/2角ABC,AN平分角DAC,角MAO=1/2角DAC所以,

如图,在三角形ABC中,AD平分角BAC,AD的垂直平分线交……

∠CAE=∠B理由如下:∵EF垂直平分AD∴EA=ED∴∠EAD=∠EDA∵∠EAD=∠EAC+∠CAD,∠EDA=∠B+∠BAD又∵∠BAD=∠CAD∴∠CAE=∠B

如图,在三角形abc中,ad是高

(1)直角三角形,斜边中线等于斜边的一半,周长=DFA+AED=CA+AB=18(2)EF//BC,AD垂直于BC,所以EF垂直于AD

如图,在三角形ABC中,BD平分角ABC,且BD=AD,求证:角ABC=角BDC.

等着再答:再答:最简单的方法再答:不懂就问再答:

如图,在三角形ABC中,BD平分角ABC,BD=AD,求证:角ABC=角BDC

因为AD=BD所以∠A=∠ABD因为∠ABD=∠DBC所以∠BDC=∠A+∠ABD=∠ABD+∠DBC=∠ABC再问:呵呵呵

如图,在三角形ABC中,DE平行BC,EF平行CD.求证AF:AD=AD:AB

证明:∵DE∥BC∴△ADE∽△ABC∴AD/AB=AE/AC∵EF∥CD∴△AFE∽△ADC∴AF/AD=AE/AC∴AF/AD=AD/AB∴AF:AD=AD:AB数学辅导团解答了你的提问,

如图在三角形abc中ab等于ac等于bc,高ad=h,

因为ab=ac=bc,所以为等边三角形,设bd=x,则ab=2x,则ad=根号下3x,即根号下3x=h,由勾股定理得,x=3分之根3x

如图,在三角形ABC中,AB=AD,DC=DB,DE⊥BC.

1、因为DC=DB,DE⊥BC所以△BEC是等腰三角形(垂足到两端点距离相等的三角形是等腰三角形)所以∠EBC=∠C因为AB=AD(是等腰三角形啦)所以∠ABD=∠ADB所以△BDF∽△CBA2、根据

如图,在三角形ABC中,AE=EC,AD⊥BC,EF⊥BC,

相等,延长BE,过A做AG平行于BC交BE于G,延长GA,过B做BH垂直GA于H.在直角三角形BEF中BE=2EF所以∠EBF=30度,AG平行BC,所以∠AGB=∠EBF=30度,所以在三角形BGH

如图,在Rt三角形ABC中,角BAC=90度,AD垂直BC于

解题思路:(1)∵AD⊥BC∴∠DAC+∠C=90度∵∠BAC=90°∴∠BAF=∠C∵OE⊥OB∴∠BOA+∠COE=90°∵∠BOA+∠ABF=90°∴∠ABF=∠COE∴△ABF∽△COE。(2