如图,在三角形ABC中,P是BC边上一点,过点B作BC的垂线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:49:18
如图,在三角形ABC中,P是BC边上一点,过点B作BC的垂线
如图8,已知在三角形abc中,ab=ac,p是三角形abc内一点,且∠apb大于∠apc.求证:pc大于pb

证明:以AC为边,在△ABC外作∠CAQ=∠BAP,且AQ=AP,连接CQ∵AB=AC,∠BAP=∠CAQ,AP=AQ∴△ABP≌△ACQ(SAS)∴∠APB=∠AQC,PB=QC连接PQ∵AP=AQ

在三角形ABC中,AE和BF是中线且交于点P,已知三角形BEP的面积为5,求三角形ABC的面积.如图::

中线交点是中线的三等分点BPC里面等底同高BPC面积是10,然后三等分点等底同高BPA是俩BPE是10,同理APC是10加到一起是30.引用怎样证明三角形的重心(中线的交点)是中线的一个三等分点

如图,在三角形ABC中,边AB.BC的垂直平分线相交于点P.是判断点P是否在边AC的垂直平分线上,说明理由

答案是肯定的!既然P点在AB、BC的垂直平分线上,那么PA=PB=PC.因而P点必在AC的垂直平分线上.P点是△ABC的外心——外接圆的圆心.

如图,三角形ABC中,AB=AC,BD=CE,角1=角B.求证:三角形DEF是等腰三角形(图有点畸形,在三角形ABC中,

AB=AC告诉我们∠B=∠C证明:∵AB=AC∴∠B=∠C∵∠B=∠1且∠B+∠BDE+∠DEB=180°∠DEB+∠1+∠FEC=180°∴∠BDE=∠FEC在△BDE和△CEF中:∠BDE=∠FE

如图:在三角形ABC中,AB=AC=5,P是BC边上点B,C外的任意一点,则AP^2+PB*PC=

作高AD,在等腰三角形ABC中,BD=CD在直角三角形APD中,由勾股定理,AP^2=AD^2+DP^2,在直角三角形ABD中,由勾股定理,AB^2=AD^2+DB^2,即AD^2=AB^2-DB^2

如图,在三角形ABC中,AC=BC>AB,点P为三角形ABC所在平面内一点,且点P与三角形ABC的

选C如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,

如图,三角形A'B'C'是由三角形ABC平移后得到的,已知三角形ABC中任一点P(x0,y0)

分析:(1)由三角形ABC中任意一点P(x0,y0),经平移后对应点为P′(x0+5,y0-2),可得三角形ABC的平移规律为:向右平移5个单位,向下平移2个单位,即可得出对应点的坐标.(2)利用对应

、如图在三角形ABC中,AD是中线,

延长AD到E,使DE=ADABD全等于CEDCE=3AE=4AC=5所以角AEC=90度DE=2CB=2CD=2倍的根号13

求详解.如图在三角形abc中,角b等于30度,角c等于45度,ac等于2,点p是三角形abc三条边上的任意一点,若三角形

ACP4显然是等腰直角三角形,它AC上的高显然大于ACP1的AC上的高即ACP4的面积最大,它的底CP4=2√2,高AP3=√2,所以面积是2

如图,三角形ABC 中,AB=AC,AD⊥BC,P是AD上一点,BP平分∠ABC,若AC=5,B

因为AB=AC,AD垂直BC,所以D为BC中点,又因为BC=6,所以DC=3,又AC=5,由勾股定理,AD=4,所三角形ABC的面积为3*4=12.而P实际为三角形ABC的内心,即为角平分线的交点,P

如图,在RT三角形ABC中,∠C等于90°,点P,Q同时由A,B两点出发分别沿AC,BC方向向点C匀速移动,点P的速度是

解题思路:主要考查你对一元二次方程以及三角形面积的运用等考点的理解题过程:

如图,在三角形abc中,ad是高

(1)直角三角形,斜边中线等于斜边的一半,周长=DFA+AED=CA+AB=18(2)EF//BC,AD垂直于BC,所以EF垂直于AD

如图在三角形ABC中,AB=AC,点P是上任意一点,PE//AB,PF//AC

1、在三角形ABC中,AB=AC,点P是BC上任意一点,PE//AB,PF//AC所以四边形AFPE是平行四边形,所以AF=PE又AB=AC,所以角B=角C又PF//AC,所以角FPB=角C所以角FP

如图1,P是三角形ABC内一点,连接PA、PB、PC,在三角形PAB、三角形PBC和三角形PAC中

你好!(1)由直角三角形斜边上的中线等于斜边的一半得到BD=CD,所以∠DBC=∠DCB,又因为∠BEC=∠ACB=90°,所以△BEC∽△ACB,(2)由相似三角形及p是三角形自相似点,得到∠B+∠

如图,在三角形ABC中,角C=90度,AC=8,BC=6.P是AB边上的一个动点(异于A、B两点),过点P分别作AC、B

因为C=90度PM,PN为垂线,所以得到了一个长方形所以PM与BC,PN与AC平行所以角APM=角PBN角PAM=角BPN所以三角形APM,PBN相似设AM=X,要想PM=PN,则这个长方形为正方形,

在三角形ABC中,设命题p:a/sinB=b/sinC=c/sinA,命题p:三角形ABC是等边三角形,那么命题p是命题

命题p:a/sinB=b/sinC=c/sinA由正弦定理a/sinB=b/sinC=c/sinA得sinA=sinB=sinC,∴A=B=C⇒a=b=C、反之,亦成立.故答案为:充分必要

如图,三角形ABC中角B是90度,两直角边AB是7,BC是24在三角形内有点p到各边等距,则距离是

三角形内有点p到各边等距,内切圆半径r1/2AB*BC=1/2r*(AB+BC+AC)r=3