如图,在三角形abc中,∠bac=90°,BC=根号29

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 19:06:25
如图,在三角形abc中,∠bac=90°,BC=根号29
如图15,已知在三角形ABC中,BE平分角ABC交AC于E,点D在BE延长线上,且BA*BE=BD*BE

条件错了吧,应该是BA*BC=BD*BE,∴BE平分∠ABC,∴∠ABE=∠EBC∵BA*BC=BD*BE∴BA/BD=BE/BA∴△ABD∽△EBC∴∠BCE=∠BDA又∵∠BEC=∠AED∴△AD

已知如图在三角形abc中角b等于角c点d在ba延长线上ae平分角cad求证ae平行于bc

因为j角cad=角b+角c,而且角b+角c,所以角cad=2*角b=2*角c,因为ae是角cad的平分线,所以角cae=角ead=角b=角c所以ae平行于bc(同位角相等、内错角相等)

如图,在三角形ABC中,

http://i159.photobucket.com/albums/t145/l421013/MATH2/CM5.png

如图,在Rt三角形ABC中...

证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A

如图在三角形abc中 

再答:看得懂吗?再问:嗯,我还有一道再答:稍等再答:再答:再答:请注意我标的角1的位置再问:给了

如图,已知:在三角形ABC中,∠B=2∠C,延长BA到D,使AD=AB,DE⊥BC,求证CE=AD

连接AE,则AE是在直角三角形DBE斜边上的中线,故AE=AB=AD,得∠AEB=∠B=2∠C.又∠AEB=∠EAC+∠C,即2∠C=∠EAC+∠C,则∠EAC=∠C,得AE=CE.所以:CE=AD&

已知,如图,在三角形ABC中,

∵∠EAC是外角∴∠EAC=∠B+∠C∵∠B=∠C∴∠EAC=2∠C∵AD平分∠EAC∴∠DAC=2分之∠EAC=∠C∴AD平行于BC(内错角相等,两直线平行)

已知:如图,在三角形ABC中,

用三角形内角和等于180度来计算角A+角ABC+角C=5角A=180度角A=36度角C=角ABC=2角A=72度角DBC=角C/4=18度又角C+角DBC+角BDC=180度角BDC=180度-72度

如图,已知三角形ABC中,AB=AC,F在AC上,在BA的延长线上截取AE=AF,求证BD垂直于BC

我猜测是求证EF垂直于BC证明:因AB=AC,所以∠B=∠C∠EAF+∠BAC=180度∠B=(180-∠BAC)/2又因为:AE=AF所以∠E=∠AFE所以∠E=(180-∠EAF)/2所以:∠B+

如图,在三角形ABC中,角ABC等于30度,D,E分别是BA,AC 边上的点

∵∠BAD=∠EBC,∵EG//AD,∴∠BAG=∠BEG=30°(平行线的同位角相等)∵EH⊥BE,∴∠HEB=90°,∴∠HEG=∠HEB-∠BEG=90°-30°=60°

如图,在RT三角形ABC中

半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π

如图,三角形ABC中,AB=AC,E在AC上,D在BA的延长线上,且AD=AE,连DD,求证DE垂直BC.

角BAC+角DAE=180角BAC=2角D(外角性质)角DAE=2角B(外角性质)所以2角D+2角B=180所以角D+角B=90所以ED垂直BC

如图在三角形ABC中

纳尼,上图再答:????

如图,在三角形ABC中,BA=BC,角ABC=45度,AH是BC边上的高,E是AH上的一点,

∠BAH=90°-∠ABC=45°∵EH=CH∴∠HEC=∠HCE=45°∴∠BAH=∠HCE又∵BA=BC∴∠BAC=∠BCA∴∠EAC=∠ECA∴EA=EC

如图,在四边形ABCD中,BC>BA,AD=DC,BD平分∠ABC

1.过D做BA的垂线,于BA延长线交于N;过D做BC垂线,于BC交于H因为D在∠ABC角平分线上所以DM=DH又因为DA=DC,所以三角形DAM全等于三角形DCH所以∠C=∠MAD因为∠MAD+∠BA

如图,在Rt三角形ABC中,

求的应该是BN+MN的最小值吧 过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时OB'=MN+NB'=MN+BN的

如图在三角形abc中角c等于90度ac等于bc ad是角ba

解题思路:利用角平分线的性质定理求解。解题过程:呵呵,你的问题是这样的吧?如图,三角形ABC中,已知∠C=90°,AC=BC,AD是角平分线,AB与AC+DC在数量上有何关系?为什么?

如图:在三角形ABC中,AB

倍长AD到E,AD=DE连接CE三角形CDE全等于三角形BDA(根据边角边定理来证明这个结论)对应边相等,对应角相等,则CE=AB,角DEC=角DAB三角形ACE中CE=AB所以角DAC所以角DAC