如图,在三角形abc中,内切圆

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:56:23
如图,在三角形abc中,内切圆
如图,在Rt三角形ABC中,角C等于 90,AC=8.BC=6圆O为三角形ABC的内切圆

圆半径2,OG为根号5再问:怎么算←再答:圆半径等于(AC+BC-AC)/2再问:OG呢再答:三角形OGF中OF=2,FG=1,所以OG为根号5

如图,在直角三角形ABC中,角C=90°,AC=6,BC=8,则三角形ABC的内切圆半径为r的值为

2再答:需要具体过程么再问:嗯再答:设为r,因为内切圆,所以半径与三角形的三条边都垂直,所以根据面积可以列式,(6+8+10)*r/2=6*8/2再答:r=2

如图,在三角形ABC中,角C=90,内切圆O与AB相切与点E,BO的延长线交AC与点D.求证:

连结OE,则OE⊥AB,∵圆O是Rt△ABC的内切圆,∴BO是∠ABC的角平分线,∴∠OBE=∠DBC∴Rt△BOE∽Rt△BDC,∴BE:BC=BO:BD即BE*BD=BO*BC

如图,在三角形ABC中,

http://i159.photobucket.com/albums/t145/l421013/MATH2/CM5.png

如图,在RT三角形abc中,∠c=90°,BC=3,AC=4,⊙o为RT三角形abc的内切圆(1)求RT△ABC的内切圆

确认D、E是切点.半径r.①∵四边形CDOF为正方形{切线定义,四个角是直角},r=CD=CF;∵5=AB{勾三股四玄五}=AF+BD{切线长定理}=(4-r)+(3-r)=7-2r,∴r=1.②移动

如图,在Rt三角形ABC中...

证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A

如图在三角形abc中 

再答:看得懂吗?再问:嗯,我还有一道再答:稍等再答:再答:再答:请注意我标的角1的位置再问:给了

如图,在RT三角形ABC中,角C等于90度,AB,BC,CA的长分别为c,a,b,求三角形ABC的内切圆半径

回答:设圆O与AB切于点D,与BC切于点E,与AC且于点F则AD=AF,CF=CE,BD=BE且AD+BD=cAF+CF=bCE+BE=a可得r=CE=CF=(a+b-c)/2再问:你给个图我再问:不

如图,在RT△ABC中,AB=5,BC=12,AC=13,则此三角形的内切圆半径为

设内切圆半径为r,则由已知可得,1/2*AB*r+1/2*BC*r+1/2*AC*r=1/2*AB*BC,化简可得r=AB*BC/(AB+BC+AC)=2

已知,如图,在三角形ABC中,

∵∠EAC是外角∴∠EAC=∠B+∠C∵∠B=∠C∴∠EAC=2∠C∵AD平分∠EAC∴∠DAC=2分之∠EAC=∠C∴AD平行于BC(内错角相等,两直线平行)

如图,在△ABC中,AB=6,AC=8,∠CAB=60°.求三角形内切圆的半径和外接圆的半径

过B作BM⊥AC可得AM=3BM=3√3在△BCM中用勾股定理BC=2√13内切圆圆I的半径为r1/2r(AB+BC+AC)=1/2×8×3√3r=(7√3-√39)/3外接圆

(2008年 绵阳)如图,一直在三角形ABC中.内切圆I和边BC.CA.AB分别切于点D.E.F

连接IE、IF,则:∠AEI=∠AFI=90度,且IE=IF1、当AB=6,AC=8,BC=10时,显然△ABC是直角三角形.所以:AEIF为正方形.圆I内切于△ABC,所以:AE=AF,BD=BF,

已知:如图,在三角形ABC中,

用三角形内角和等于180度来计算角A+角ABC+角C=5角A=180度角A=36度角C=角ABC=2角A=72度角DBC=角C/4=18度又角C+角DBC+角BDC=180度角BDC=180度-72度

如图,在RT三角形ABC中

半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π

如图,已知在三角形ABC中,AB=AC,内切圆O与边BC,AC,AB分别切于D,E,F 求:BF=EC.

作OF,OE,OA因为相切,OF垂直AB,OE垂直AC考察三角形OFA与OEAOA=OAOF=OE根据直角三角形全等判定原理三角形OFA与OEA全等由此AF=AE又AB=AC所有BF=EC

如图,在△ABC中,AB=AC=10,BC=12,圆O是三角形ABC的内切圆.求圆O的面积.

角形ABC是等腰三角形,底边上的高h=√100-36=8三角形ABC的面积为48设三角形的内切圆的半径为x那么内切圆圆心到三角形ABC三边的距离都是x于是,1/2AB*x+1/2AC*x+1/2BC*

如图在三角形ABC中

纳尼,上图再答:????

如图,在Rt三角形ABC中,

求的应该是BN+MN的最小值吧 过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时OB'=MN+NB'=MN+BN的

如图:在三角形ABC中,AB

倍长AD到E,AD=DE连接CE三角形CDE全等于三角形BDA(根据边角边定理来证明这个结论)对应边相等,对应角相等,则CE=AB,角DEC=角DAB三角形ACE中CE=AB所以角DAC所以角DAC