如图,在三角形ABC中,点EF分别在ABAC上,DE垂直DF,点D是BC的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 10:10:16
三角形AEG相似三角形ABDEG/BD=AG/AD同理可得FG/DC=AG/ADEG/BD=FG/DC所以当BD=DC时EG=FG
连结EC三角形AED全等于ACD,得到:角AED=角ACD因为:AE=AC所以角AEC=角ACE所以角CEN=角ECD因为EF平行于BC所以角CEM=角ECD所以角CEN=角CEM所以CM=CN
(1)因为EF∥BC那么可以得出△AEF≌△ABC那么EF:BC=AG:AD=3:(3+2)=3:5(2)S△AEF:S△ABC=(1/2*EF*AG):(1/2*BC*AD)=(EF*AG):(BC
证明:延长AD到G,使DG=AD,连接BG∵D是BC中点∴BD=CD又∵∠ADC=∠GDB【对顶角相等】,AD=GD∴⊿ADC≌⊿GDB(SAS)∴AC=BG,∠CAD=∠BGD∵BE=AC∴BG=B
楼主,我来为您配图:(1)证法一:如图∵EF垂直平分BC,∴BE=EC,BF=CF,∵CF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;证法二:如图∵EF垂直平分BC,∴BD=DC,EF⊥
⑴∵EF垂直平分AD,∴EA=ED,∴∠EAD=∠EDA.⑵∵EF垂直平分AD,∴FA=FD,∴∠FAD=∠FDA,∵AD平分∠BCA,∴∠FAD=∠DAC,∴∠FDA=∠CAD,∴DF∥AC,⑶∵∠
证明:方法一:延长AD至点M,使MD=FD,连MC,∴△BDF≌CDM(SAS).∴MC=BF,∠M=∠BFM.∵EA=EF,∴∠EAF=∠EFA,∵∠AFE=∠BFM,∴∠M=∠MAC,∴AC=MC
证明:方法一:延长AD至点M,使MD=FD,连MC,∴△BDF≌CDM(SAS).∴MC=BF,∠M=∠BFM.∵EA=EF,∴∠EAF=∠EFA,∵∠AFE=∠BFM,∴∠M=∠MAC,∴AC=MC
证明:∵EC平分∠DEF∴∠DEC=∠FEC∵EF∥BC∴∠BCE=∠FEC∴∠BCE=∠DEC∴DE=DC∵AD⊥EC∴∠DGE=∠DGC=90∵DG=DG∴△DEG≌△DEC(HL)∴CG=EG∴
延长CE交AB与G∵AE⊥CG,AE平分∠BAC∴△AGE是等腰三角形∴E是GC的中点∵D是CB的中点∴DE//AB∴DE//BF∵EF//BD∴四边形BDEF是平行四边形
延长FE,截取EH=EG,连接CH∵E是BC中点,那么BE=CE∠BEG=∠CEH∴△BEG≌△CEH(
相似三角形有EBH与HFCAFB与AEC
∵DE⊥AB,DF⊥AC∴∠AED=∠AFD=90°∵AD是角BAC的平分线∴∠DAE=∠DAF∵AD=AD∴△ADE≌△ADF∴AE=AFDE=DF∴点A和点D在EF的垂直平分线上∴AD是EF的垂直
由EF平行于BC可证AEG相似于ABD,同理AGF相似于ADC.则EG比GF等于BD比DC等于1比1.所以DG等于GF.
∵EF//BC,∴∠FOC=∠BCO∠EOB=∠CBO又OC、OB为∠ABC和∠ACB的平分线∴∠BCO=∠FCO∠CBO=∠EBO∴∠FOC=∠FCO∠EOB=∠EBO∴△FOC、△BOE均是等腰三
1、两条支线垂直与同一条直线(AB),这两条直线平行,即CD与EF2、----如∠1=∠A=∠2=∠B,∠BEF=65,则∠B=90-65=25∠ACB=180-∠A-∠B=180-25-25=130
∵CD⊥ABEF⊥AB∴CD∥EF∴∠2=∠DCB∵∠1=∠2∴∠DCB=∠1∴BC∥DG∠3=∠ACB=110º
证明:连接ED、FD∵AB=AC∴∠B=∠C在△EBD和△DCF中{EB=DC{∠B=∠C{BD=CF∴△EBD≌△DCF(SAS)∴ED=FD又∵DG⊥EF∴EG=FG(三线合一)希望能解决您的问题
相等,延长BE,过A做AG平行于BC交BE于G,延长GA,过B做BH垂直GA于H.在直角三角形BEF中BE=2EF所以∠EBF=30度,AG平行BC,所以∠AGB=∠EBF=30度,所以在三角形BGH