如图,在四棱锥O-ABCD中,底面ABCD是边长为1的菱形,角ABC=45度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:46:55
如图,在四棱锥O-ABCD中,底面ABCD是边长为1的菱形,角ABC=45度
如图在四棱锥P—ABCD中,底面ABCD是菱形,

1、取CD中点M,连结EM、BM,BD,△DAB是正△,DF⊥AB,BM⊥CD,DF//BM,EM//PD,PD∩DF=D,EM∩BM=M,面EMB//面PDF,BE∈面BEM,故BE//平面PDF.

如图,在四棱锥O-ABCD中,底面ABCD是边长1为的菱形,∠ABC=π/3,OA⊥底面ABCD,OA=2,M为OA的中

(1)连接AC,因为AB平行CD所以角CDM就是直线AB与MD所成的角而OA⊥底面ABCD又题中数据得AC=1,MD=根号(AM^2+AD^2)=根号2,MC=根号(AM^2+AC^2)=根号2,CD

如图 在四棱锥P-ABCD中 底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=PC

证明(1)连接AC交BD于O,连接OE∵ABCD是正方形∴OC=OA∵E是PC中点∴EC=EP∴OE||PA∵OE在面EDB内∴PA//平面EDB(2)∵ABCD是正方形∴BC⊥CD∵PD⊥底面ABC

如图,在四棱锥s—abc中,底面abcd是矩形,sa垂直于底面abcd

证明:1.连结AC.BD,交于点O,连结MO易知点O是BD的中点又点M是SD的中点,则在△SBD中有:OM//SB因为OM在平面ACM内,SB不在平面ACM内所以由线面平行的判定定理可得:SB//平面

如图,在四棱锥S-ABCD中,底面ABCD是正方形,

第三个问题:利用赋值法,令SA=AB=AD=DC=1,则容易求出:SD=AC=√2、SC=√3.∵AN⊥SC,∴由射影定理,有:AC^2=CN×SC,∴CN=AC^2/SC=2/√3=(2/3)√3,

如图在四棱锥PABCD中,底面ABCD为平行四边形,O为AC的中点,M为PD的中点,求证:PB∥平面ACM

连接BD,OM.在平行四边形ABCD中,O是BD的中点,又因为M是PD的中点,所以,在三角形PBD中,MO//PB,又因为MO在平面ACM内,BP不在平面ACM内,所以PB//平面ACM(因为大部分符

如图,在四棱锥S-ABCD中,M是SC中点,求证:SA//平面BMD

这个四棱锥底面至少要是平行四边形(或者BD连线平分线段AC),不然结论不成立.连接AC,BD相交于点O,连接MO,在三角形ACS中,MO是其中位线,所以MO‖SA,显然MO在平面BMD上,所以SA‖平

如图,在四棱锥O-ABCD中,底面ABCD是边长1为的菱形,∠ABC=π/4,OA⊥底面ABCD,OA=2,M为OA中点

可以像你那样做,或许是你向量坐标弄错了,你再重新确认一下给点的坐标,再算出向量,最后试试...我觉得直接用几何来做更快,向量法麻烦

如图,在四棱锥P-ABCD中,ABCD是平行四边形,MN分别是AB,PC的中点

简单写一下:1.取CD中点E,连ME、NE易证ME∥AD,NE∥PD(中位线)∴面NME∥面PAD2.梯形作FN∥BC交PB于F,连FM∵ME∥BC,NF∥BC∴ME∥NF∴四边形MENF是梯形也可以

如图,在四棱锥O-ABCD中,底面ABCD是边长1为的菱形,∠ABC=π/4,OA⊥底面ABCD,OA=2,M为OA的中

⑴设P是OD中点,则MP‖AD‖NC.MP=AD/2=NC ,MPCN是平行四边形,  MN‖PC∈OCD,MN‖OCD.⑵ 如图,把M-ABCD补成四掕柱,再

如图,四棱锥P-ABCD中,ABCD为矩形,△PAD⊥面ABCD

1)连AC则:E、F分别是CP、AC中点EF//AP所以,EF‖面PAD2)面PAD⊥面ABCD,PAD∩面ABCD=AD,CD⊥AD所以,CD⊥面PADCD⊂面PDC所以,面PDC⊥面P

如图,在四棱锥P-ABCD中,底面ABCD是矩形,且PA⊥平面ABCD,PA=AD=4,AB=2,以BD的中点O为球心

设平面ABM与PC交于点N,因为AB‖CD,所以AB‖平面PCD,则AB‖MN‖CD,由(1)知,PD⊥平面ABM,则MN是PN在平面ABM上的射影,所以∠PNM就是PC与平面ABM所成的角,且∠PN

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC

你没有给原图,我也不知道那些图中的长度,所以我就用字母代替了,由于字母代替计算很麻烦我就也就给你求出两个平面的法向量了,最后你用向量的内积公式求以下就可以了,不管面的长度是字母还是数字里面的过程就是这

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥BD于O.

证明:(I)∵PA⊥平面ABCD,∴PA⊥BD.又BD⊥AC,AC∩PA=A,∴BD⊥平面PAC.∵BD⊂平面PBD,∴平面PBD⊥平面PAC.(II)∵AC⊥BE,AC⊥BD,BE∩BD=B,∴AC

如图,四棱锥P-ABCD中,底面ABCD是正方形,O是正方形ABCD的中心,PO⊥底面ABCD,E是PC的中点.求证:

证明:(Ⅰ)连接OE.∵O是AC的中点,E是PC的中点,∴OE∥AP,又∵OE⊂平面BDE,PA⊄平面BDE,∴PA∥平面BDE.      

如图,在四棱锥S-ABCD中,侧棱SA=SB=SC=SD,底面ABCD是菱形,AC与BD交于O点

(1)先用同一法证S在底面ABCD的射影是O.作SO'⊥底面ABCD,垂足为O',由于SA=SB=SC=SD,所以O‘A=O’B=O‘C=O’D又底面是菱形,从而 O'

如图,在四棱锥P-ABCD中,PA=AB=AD=1,四边形ABCD是正方形,PA⊥平面ABCD,求四棱锥的表面积

ABCD面积为1PAB面积为0.5PAD面积为0.5PB=√2AC=√2PC=√3PBC是直角三角形同理PCD也是直角三角形面积为0.5√2四棱锥表面积为2+√2

如图,在四棱锥V--ABCD中,底面ABCD是矩形,侧面VAB⊥侧面VBC

VAB⊥VBCAB∈VAB       =>AB⊥VBC     &nbs