如图,在四边形abcd中,mnpq分别为ab,bc,dc,da上的点,且

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:16:39
如图,在四边形abcd中,mnpq分别为ab,bc,dc,da上的点,且
已知,如图,在四边形ABCD中,M,N,E,F分别为AD,BC,BD,AC的中点.求证:MN,EF互相平分.

ME,FN分别为三角形DAB,CAB的中位线,所以ME平行且等于(1/2)AB,FN平行且等于(1/2)AB,所以ME平行且等于FN,所以MENF为平行四边形,所以MENF的对角线EF,MN互相平分.

如图,已知在⊙O中,直径MN=10,四边形ABCD是正方形,并且∠POM=45°,则AB的长为______.

∵∠POM=45°,∠DCO=90°,∴∠DOC=∠CDO=45°,∴△CDO为等腰直角三角形,∴CO=CD.连接OA,则△OAB是直角三角形,∵四边形ABCD是正方形,∴AB=BC=CD=CO,BO

如图,在四边形ABCD中,AD‖BC,AD

一楼想多了,这是初中生.过点A、D分别作BC的垂线,垂足分别为E、F,因AB=AC,所以E为BC中点,所以DF=AE=0.5BC=0.5BD,所以∠CBD=30°,∠BCD=0.5(180°-∠CBD

如图,在四边形ABCD中,

不知道说的是哪个角,反正OA=OC(斜边中线等于斜边一半)那么角OAC=角OCA

如图,在四边形ABCD中,∠BAC=∠BDC=90°,M、N分别是AD、BC中点.求证MN⊥AD

证明:连接AN、DN∵AN、DN分别是直角三角形ABC和直角三角形DBC斜边BC上的中线∴AN=DN=1/2BC∵MN是等腰三角形NAD底边AD的中线∴MN⊥AD(等腰三角形三线合一)

如图在四边形ABCD中,P、M、N、Q分别是AC、AB、CD、MN的中点,AD=BC,求证:PQ垂直MN

证明:因为:P、M、N、Q分别是AC、AB、CD、MN的中点所以:MP=(1/2)BC      NP=(1/2)AD而BC=AD所以:MP

如图,在四边形ABCD中,AB=CD,M.N.P.Q分别是AD.BC.BD.AC的中点,求证:MN与PQ互相垂直平分

证明:连结MP、PN、NQ、QM∵M、N、P、Q分别是AD、BC、BD、AC的中点∴MP=NQ=1/2AB,PN=QM=1/2CD∵AB=CD∴MP=NQ=PN=QM则MPNQ是菱形,所以MN与PQ互

如图,在四边形ABCD中,∠BAC=∠BDC=90°,M,N分别是AD,BC的中点,求证:MN⊥AD.

连AN,DN,∵∠BAC=∠BDC=90°,M,N分别是AD,BC的中点∵AN=DN=1/2BC∴MN⊥AD.﹙等腰三角形底边中线垂直底边﹚

如图,在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,求证:MN⊥BD

证明:连接MB,MC∵∠ABC=90°,M是AC中点∴BM=1/2AC(直角三角形斜边中线等于斜边一半)同理MD=1/2AC∴MB=MD∵N是BD中点∴MN⊥BD(等腰三角形三线合一)

在四边形ABCD中,点M、N分别在AB、BC上,且MN=AM+CN.如图1,若四边形ABCD为正方形,则角MDN=?如图

将三角形DCN绕点D顺时针旋转,使得CD与AD重合.设点N的新位置为点P.因为角A+角C=180度,所以P在直线AB上.三角形DMN与三角形DMP全等(三边对应相等),所以角MDN是角ADC的一半.(

如图,四边形ABCD中,

∵∠D=90°∴由勾股定理得:AC²=CD²+AD²∴AC=4∵BC=3,AB=5∴AB²=AC²+BC²∴AC⊥BC∴S△ABC=AC*B

如图在四边形ABCD中AC平分角DAB

证明:∵AC平分∠DAB(1)      ∴∠DAC=∠BAC      &nb

如图在矩形abcd中mn分别是adbc的中点pq分别是bmdn的中点四边形mpnq是什么样的四边

四边形MMPNQ是平行四边形证明:因为四边形ABCD是矩形所以AD=BCAD平行BC因为M,N分别是AD,BC的中点所以AM=DM=1/2ADBN=CN=1/2BC所以DM=BN所以四边形BMDN是平

如图,在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,求证:MN⊥BD.

证明:∠ABC=∠ADC=90°,M是AC的中点∴DM=AC/2BM=AC/2(斜边上中线等于斜边的一半)DM=BM又N是BD的中点∴MN⊥BD(三合一)

如图在四边形abcd中,∠ABC=,∠ADC=90,M、N分别是AC、BD的中点,求MN和BD的位置关系

Rt△ADC中∵AM=MC∴MD=AC/2∴MB=AC/2∴MD=MB又BN=ND∴MN⊥BD

如图在平行四边形ABCD中MN分别为DCAB的中点,∠A=60°,AB=2BC.求证四边形BMDN是菱形

∵AB=2BC(已知条件),BC=AD(由平行四边形ABCD所得),AN=NB(由N为AB的中点得)∴AN=AD∵∠A=60°(已知条件)∴△AND为等边三角形∴DN=AN=NB∵DM=NB,DM//

13.如图,在□ABCD中,EF∥BC,MN∥AB,且四边形AEPN,BEPM,CFPM的面积分别为6,4,8.求□AB

S(AEPN):S(BEPM)=S(NPFD):S(CFPM)6:4=S(NPFD):8所以S(NPFD)=12∴S=S(AEPN)+S(BEPM)+S(NPFD)+S(CFPM)=6+4+12+8=

如图,在四边形ABCD中,BC

分别过A做CD的垂线,交CD于E,做BC的垂线,交BC的延长线于F,得AE=DE=2,AC=4,CE=2√3所以△ACD面积为0.5*AE*CD=2+2√3由AC=4,得AF=2,CF=2√3,又AB

已知,如图,在四边形ABCD中,AB>DC,

因为角1=角2,AC=BD,AB=BA,那么三角形ABC全等于三角形BAD,所以BC=AD=CD,角CBA=角DAB,又因为AC垂直BC,所以角ADB=角BCA=90度又因为角1=角2,所以角DAC=

如图,在四边形ABCD中,角ABC=角ADC=90°,M,N分别是AC,BD的中点,求证MN垂直于BD

证明:连接BM、DM∵∠ABC=90,M是AC的中点∴BM=AC/2(直角三角形中线特性)∵∠ADC=90,M是AC的中点∴DM=AC/2∴BM=DM∵N是BD的中点∴MN⊥BD(三线合一)