如图,在四边形ABCD中,M是边BC的中点,AM,BD互相平分交于点O

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:03:18
如图,在四边形ABCD中,M是边BC的中点,AM,BD互相平分交于点O
如图,在四边形ABCD中,

不知道说的是哪个角,反正OA=OC(斜边中线等于斜边一半)那么角OAC=角OCA

如图,在四边形ABCD中,∠ABC=∠ACD=90°,M,N分别是AC,BD

在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,求证:MN⊥BD原题是这样的吧!童鞋,请不要重复发帖子啊!浪费时间!证明:连结BM,DM在Rt△ABC中,点M是斜边AC的

如图在四边形ABCD中,AB=CD,AD=CB.四边形ABCD是否是平行四边形?为什么?

是啊因为AB=CD,AD=CB,还有AC=CA所以△BAC≌△CDB所以∠BAC=∠DCA所以AB∥CD又AB=CD所以四边形ABCD是否是平行四边形(一组对边平行且相等的四边形是平行四边形)

如图,在四边形ABCD中,AB=CD,∠A=∠C,四边形ABCD是平行四边形吗?为什么

是.证明如下:∵BD^2=AB^2+AD^2+2AB*ADcos∠ABD^2=CD^2+BC^2+2CD*BCcos∠C又AB=CD,∠A=∠C∴AD^2+2AB*ADcos∠A=BC^2+2AB*B

如图,四边形ABCD中,

∵∠D=90°∴由勾股定理得:AC²=CD²+AD²∴AC=4∵BC=3,AB=5∴AB²=AC²+BC²∴AC⊥BC∴S△ABC=AC*B

如图,在四边形ABCD中,∠ABC=∠ADC=90°,M是AC的中点,

(1)证明:∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=12AC,DM=12AC,∴BM=DM;(2)∵BM=DM,N是BD的中点,∴MN⊥BD(等腰三角形三线合一).

已知,如图,在四边形ABCD中,AB=AD,CB=CD,点M,N.P,Q分别是AB,BC,CD,DA的中点,求证:四边形

证明:连接A,C连接B,D交AC于O点,令AC与MO的交点为S∵AD=AB,DC=BC,AC=AC∴∠AOD=∠AOB=90°∵M,N.P,Q分别是AB,BC,CD,DA的中点∴MQ‖BD,QP‖AC

如图,在四边形abcd中,ab=cd,cb=cd,ab‖cd.求证:四边形abcd是菱形

证明:∵AB=CD,AB//CD∴四边形ABCD是平行四边形∵CB=CD∴四边形ABCD是菱形(邻边相等的平行四边形是菱形)

已知:如图,在四边形ABCD中,AD‖BC,BD垂直平分AC.求证:四边形ABCD是菱形.

AC交BD于O点,三角形ADO与三角形BOC相似,所以DO=BO,对角线互相垂直且平分的四边形是菱形

如图,在四边形ABCD中,AD‖BC,AB‖CD.四边形ABCD是中心对称轴图形吗

∵AD‖BC,AB‖CD∴ABCD是平行四边形∴∠A=∠C,∠B=∠DAB=DC,AD=BC∵AC和BD交于O,∴绕该点O旋转180度可以和原图形重合因此平行四边形是中心对称图形

如图,在四边形ABCD中,AD=BC,AB=CD,求证,四边形ABCD是平行四边形

该题应该是属于平行四边形判定定理的证明,理由如下:连结AC,∵AB=CD,BC=DA,AC=CA,∴△ABC≌△CDA,∴∠BAC=∠DCA,∠BCA=∠DAC,∴AB∥CD,BC∥AD,∴四边形AB

如图 在四边形ABCD中,AB平行CD 角A等于角C.四边形ABCD是平行四边形吗?为什么?

1连接BD因为AB平行CD所以角DBA=角BDC因为角DBA=角BDC角A=角CBD=BD所以三角形ABD全等于三角形CDB所以AB=CD因为AB平行CDAB=CD所以四边形ABCD是平行四边形2∵A

已知:如图,在平行四边形ABCD中,M是AD边的中点,且MB=MC,求证:四边形ABCD是矩形

1、因为BM=MC所以∠MBC=∠MCBAD∥BC,所以∠AMB=∠DMC2、AM=MD,BM=MC,∠AMB=∠DMC三角形两条边及夹角相等,这两个三角形就是全等三角形△ABM≌△DCM所以∠BAM

(2009•淮安模拟)如图,在三棱柱BCE-ADF中,四边形ABCD是正方形,DF⊥平面ABCD,M,N分别是AB,AC

证明:(1)如图,连接DN,∵四边形ABCD是正方形,∴DN⊥AC∵DF⊥平面ABCD,AC⊂平面ABCD,∴DF⊥AC又DN∩DF=D,∴AC⊥平面DNF∵GN⊂平面DNF,∴GN⊥AC(2)取DC

如图,在四边形ABCD中,AC=BD,M,N,P,Q分别是AD,BC,AB,DC的中点(1)猜想四边形MPNQ是什么特殊

◇根据三角行中位线原理:PM平行与BD,等于BD的二分之一;NQ也平行于BD,等于BD的二分之一.所以PM平行且相等于NQ,同理PN平行且相等于MQ.所以是平行四边形.又因为AC=BD,所以这个平行四

如图,在四边形ABCD中,AB=CD,M、N分别是AD、BC的中点如图,在四边形ABCD中,AB=CD,M、N分别是AD

证明:连接AC取AC中点P,∵M,N分别是AD,BC的中点∴NP‖AB,PM‖CD,NP=AB/2,PM=CD/2∠PMN=∠NFC,∠PNM=∠BEN∵AB=CD∴NP=PM∴∠PNM=PMN∴∠B

如图,在四边形ABCD中,BC

分别过A做CD的垂线,交CD于E,做BC的垂线,交BC的延长线于F,得AE=DE=2,AC=4,CE=2√3所以△ACD面积为0.5*AE*CD=2+2√3由AC=4,得AF=2,CF=2√3,又AB

如图,在平行四边形ABCD中,M,N,P,Q分别是AB,BC,CD,AD的中点,试判断四边形MNPQ是怎样的四边形?并说

如图,∵M、N是AB、CB中点,∴MN∥AC且MN=AC/2(三角形中位线定理),同理,PQ∥AC,且PQ=AC/2,∴MN∥PQ,且MN=PQ∴四边形MNPQ是平行四边形(一组对边平行且相等的四边形

如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应

条件是BC=AD因为HE‖=1/2BC‖=GF,同理GH‖=EF,故EFGH为平行四边形,要使四边形EFGH是菱形,则EF=GH,故BC=AD

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD是平行四边形,且AC⊥CD,PA=AD,M,Q分别是PD

(1)取PA的中点E,连结EM、BE,∵M是PD的中点,∴ME∥AD且ME=12AD,又∵Q是BC中点,∴BQ=12BC,∵四边形ABCD是平行四边形,∴BC∥AD且BC=AD,可得BQ∥ME且BQ=