如图,在四边形abcd中,点e在边bc上,点f在bc的延长线上,且cf=be

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:35:20
如图,在四边形abcd中,点e在边bc上,点f在bc的延长线上,且cf=be
如图,在四边形ABCD中,对角线AC,BD相交于点O,E,F分别是BO,OD的中点,且四边形AECF是平行四边形,试判断

AECF是平行四边形AF=ECEO=FOE,F分别是BO,OD的中点BE=DF角OEC=角OFA180C-OEC=180-OFABEC=DFAAF=ECBE=DFBEC全等DFAL.EBC=L.ADF

如图,.在四边形ABCD中,点E、F在对角线AC上,且AD//BC,ED//BF,AF=CE.求证:四边形ABCD是平行

证明:∵AD//BC∴∠DAE=∠BCF∵ED//BF∴∠DEA=∠BFC∵AF=CE∴AE=CF∴△ADE≌△CBF(角边角)∴AD=BC∵AD//BC∴四边形ABCD是平行四边形(有一组对边平行且

如图 在四边形ABCD中 点E、F、G、H 分别是BD BC AC AD 的中点

连接EF和HG因为E,F分别是BD和BC的中点,所以EF是三角形BCD的中位线所以EF=1/2CD,且EF平行于CD因为H,G分别是AD和AC的中点,所以HG是三角形BCD的中位线所以HG=1/2CD

如图,在四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.

做BD的辅助线连接,有题目可以得出,证明EFGH为平行四边形,只要证明四边形的两边是平行的就行了.\x0d在三角形ABD中,E,H分别为AB,AD,的中点,有三角形中点线证明可得,EH是平行于BD的,

已知,如图,在四边形ABCD中,AD=BC,点E,F,G,H,分别是AB,CD,AC,BD的中点,求证:四边形EGFH是

证明:∵E是AB的中点,H是BD的中点∴EH是△ABD的中位线∴EH=1/2AD同理:FG是△ACD的中位线,EG是△ABC的中位线,FH是△BCD的中位线∴FG=1/2AD,EG=1/2BC,FH=

如图在四边形ABCD中,AD=BC,点E F G H分别是AB CD AC BD的中点求证四边形EGFH是菱形

证明:∵E是AB的中点,G是AC的中点∴EG是△ABC的中位线∴EG=½BC,EG//BC∵H是BD的中点,F是CD的中点∴HF是△BCD的中位线∴HF=½BC,HF//BC∴EG

已知:如图,在四边形ABCD中,AD=BC,点E,F,G,H分别是AB,CD,AC,BD的中点,求证:四边形EGFH是菱

简单再问:好吧!再答:我做再答: 再答:早再答:对了再答:给好评再答:给嘛!再答:hi再问:谢谢。再问:很好!再问:很好!再问:错了我找你。再答:加入梦之都群368575682为你解答再问:

已知:如图,在四边形ABCD中,AD=BC,点E,F,G,H分别是AB,CD,AC,BD的中点.求证:四边形EGFH是菱

∵E,F,G,H分别是AB,CD,AC,BD的中点∴EH∥AD,且EH=1/2ADGF∥AD,且GF=1/2ADEG∥BC,且EG=1/2BCFH∥BC,且FH=1/2BC又∵AD=BC∴EH=GF=

已知:如图,在四边形abcd中,ad=bc,点e,f,g,h分别是ab,cd,ac,bd的中点.求证:四边形egfh是菱

证明:∵F是CD的中点,G是AC的中点∴FG是△ACD的中位线∴FG//AD,FG=1/2AD∵E是AB的中点,H是BD的中点∴EH是△ABD的中位线∴EH//AD,EF=1/2AD∴FG//EH,F

如图,在四边形ABCD中,点E,F分别是AD BC的中点,三角形ABM与三角形CDN 面积分别7和11,求四边形EMFN

.7+11=18答案是18连接ef你会发现EMF面积=AMB面积(因为ABE=AEF)同理ENF=DNCunderstand?再问:为什么会EMF面积=AMB面积(ABE=AEF)?不明白啊,只能看出

如图,在四边形ABCD中,点E在AB上,EF//BC,FG//CD,求证:EG//BD

证明:因为EF∥BC所以AE/AB=AF/AC因为GF∥CD所以AG/AD=AF/AC则AE/AB=AG/AB∵∠EAG=∠EAG所以△AEG∽△ABD则∠AEG=∠ABD∴EG∥BD如果你认可我的回

如图,在平行四边形ABCD中,点E为AD延长线上的一点,且四边形CEDB为菱形.

(1)因为四边形ABCD是平行四边形所以AD=BC,(平行四边形对边平行且相等)AB=CD(第二个问题要用到的)因为CEDB是菱形所以BC=DE(菱形的四边都相等且对边平行)所以AD就=DE所以点D就

如图,已知在平行四边形ABCD中各个内角的平分线相交于点E,F,G,H. ⑴猜想四边形EFGH是什么特殊的四边形:

1矩形;2相等.第三问等一下再答:因为,AB‖CD,可得:∠DAB+∠ADC=180°;所以,∠F=180°-(∠DAF+∠ADF)=180°-(∠DAB+∠ADC)/2=90°。同理可得:四边形EF

如图,四边形ABCD中,AB//BC,点E在边CD上,AE平分

已知条件有错,应该是AD//BC的如下是证明:过E点做EF//AD,则EF//BC又AE平分

如图,在四边形abcd中,点e,f分别在bc,ad上,且ae等于ce.求证四边形aecf是平行四边形.

你确定abcd不是平行四边形?再答:条件确定完整么再问:嗯嗯,完整的再问:是平行四边形再问:不好意思阿忘记打进去了,abcd是平行四边形再答:条件是不是abcd是平行四边形还有两条边相等?再问:额再答

如图,在四边形ABCD中,AB平行CD,AC平分∠BAD,CE平行AD交AB于点E,求证,四边形ABCD是菱形

你说的是不是上面这道题?你没有图,所以.大概字母不太对...由于过程太长,我把我在求解答的网上找到的一样的题目发给你查看原题详解求解答是很专业的数学题库网站,以后有问题可以先去那里查一下非常方便快捷,

如图正方形ABCD中,AB=根号2,点F为正方形ABCD外一点,点E在BF上,且四边形AEFC为菱形

延长AB,过F作FG⊥AB延长线于G∵正方形ABCD,AB=√2∴AD=BC=CD=AB=√2∴AC=√2×√2=2∵菱形AEFC∴AF=AC=2,BF∥AC∴∠FBG=∠CAB=45∵FG⊥AB∴B

如图,已知在四边形ABCD中,点E是CD上的一点,连接AE、

解题思路:利用三角形全等求证。解题过程:解:(1)①②④⇒AD∥BC;证明:在AB上取点M,使AM=AD,连接EM∵AE平分∠BAD∴∠DAE=∠MAE

如图,在平行四边形ABCD中,点E,F分别是AD,BC的中点.求证:四边形BFDE是平行四边形.

AD平行且等于DC所以DE平行DF点E,F分别是AD,BC的中点所以DE=DFDE平行且等于DF四边形BFDE是平行四边形