如图,在圆O中,半径OB⊥弦CD于H,E为OB延长线上一点,CE交圆O于F

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:17:42
如图,在圆O中,半径OB⊥弦CD于H,E为OB延长线上一点,CE交圆O于F
如图,在圆O中,半径OA⊥OB,C为AB的延长线上的一点,且OC=AB,OC交圆O于D点,则弧BD的度数为

令园O的半径为r,即有OA=OB=r,由于OA⊥OB,所以OC=AB=根号2倍r,作OE⊥AB于E(E在AB上),所以OE=2分之根号2倍r,所以cos∠EOC=OE/OC=1/2,所以∠EOC=л/

如图,线段AB与圆O相切于点C,连接OA,OB.OB交圆O于点D,已知OA=OB=6,AB=6根3.求圆O的半径 (2)

1.连接OC因为OA=OB所以AC=BC=AB/2=3跟3且OC垂直AB所以半径=OC=跟号(6*6-3跟3*3跟3)=32.连接DC,阴影面积=三角形OCB面积-扇形面积因为OB=6,OC=3,所以

如图,在圆O中,OA⊥OB,C是AB弧上的一点,CD⊥OA,CE⊥OB,D,E为垂足.若圆O的半径为7.求DE的长度.

由OA⊥OB,CD⊥OA,CE⊥OB得四边形DCEO是矩形连接OC所以OC=DE因为OC是为径,即7所以DE=7

如图 在圆O中,D E分别为半径OA OB上的点 且AD=BE 点C为弧AB上一点,且CD=CE.求证弧AC=弧BC.

∵OA=OBAD=BE∴OA-AD=OB-BE∴OD=OE在△CDO和△CEO中∵CD=CEOD=OEOC公共边∴△CDO≌CEO∴∠AOC=∠BOC∴弧AC=弧BC(同心角相等的圆弧相等)

如图,在Rt△ABO中,∠B=Rt∠,以O为圆心,OB为半径画圆,分别叫AO和AO的延长线于C、D,若OB=1,AB=3

OB=1,AB=3OA=√10,OC=OB=1AC=√10-1AD=AO+OD=√10+1AC×AD=(√10-1)(√10+1)=9AB²=9AB²=AC×AD

如图,在⊙O中,半径OA⊥OB,C、D是弧AB的两个三等分点,AB分别交OC、OD与E、F点.求证:AE=BF=CD.

这个图画歪了哦OAB是等腰直角三角形,C,D是等分点所以AC=CD=DB,而ACE是等腰三角形(相似于OAC,通过角度可算出),AC=AE,同理DB=BF,得证

如图,OA、OB是⊙O的两条半径,且OA⊥OB,点C是OB延长线上任意一点,过点C作CD切⊙O于点D,连接AD交OC于点

连接OD,∵CD切⊙O于点D,∴∠ODC=90°;又∵OA⊥OC,即∠AOc=90°,∴∠A+∠AEO=90°,∠ADO+∠ADC=90°;∵OA=OD,∴∠A=∠ADO,∴∠ADC=∠AEO;又∵∠

如图,在圆O中,半径OA垂直于OB,C、D为弧AB的三等分点,AB分别交OC、OD于点E、F,下列结论:1、∠AOC=3

1.因为C、D为弧AB的三等分点,所以三段圆弧所对应的圆心角相等,都为30°,故∠AOC=30°正确2.AO=BO,∠AOC=∠BOD,∠OAE=∠OBF所以三角形AOE全等于BOF,所以OE=OF,

如图,在圆o中,弧pPA=弧PB,C,D分别是半径OA,OB的中点,连接PC,PD交弦AB于E,F两点

(1)连接PO,用SAS证明PCO全等于PDO,PO=PO,弧PA=弧PB得角POC=角POD;OA,OB都在半径,且C,D分别是OA,OB的中点得OC=OD,所以三角形PCO全等于三角形PDO得PC

已知,如图,在圆O中,半径OA⊥OB,BC//AD 求证AC⊥BD

证明:∵BC平行AD.∴∠DAC=∠BCA=(1/2)∠AOB=45度;又∠ADB=∠BCA=45度.∴∠ADB+∠DAC=90度,故AC⊥BD.

(一道初中数学题)如图,○O的半径OA⊥OB,点P在OB延长线上,连AP交○O于Q,过Q的直线CD交OP于C,

证明:如图,连接OQ∵CP=CQ∴∠P=∠CQP∵∠CQP与∠AQD是对顶角∴∠CQP=∠AQD即∠P=∠AQD∵OA⊥OB∴∠AOB=90°在Rt△POA中∠P+∠A=90°∵OQ=OA∴∠A=∠O

如图,在⊙O中,弦AB等于⊙O的半径,OC⊥AB交⊙O于C,则∠ABC=______度.

∵OA=OB=AB∴△OAB是等边三角形,∠AOB=60°,OC⊥AB交⊙O于C∴∠AOC=30°∴∠ABC=12∠AOC=15°.故答案为:15.

如图,在圆o中,直径CD垂直于弦AB于点E,连接OB,CB,已知圆o的半径为2,AB=2倍的根号3,求角BCD的度数

∵CD⊥AB∴EB=根号3在Rt△EOB中OE=根号3∴CE=3在Rt△CEB中CE=3,EB=根号3所以∠BCD=30°

如图,OA、OB是⊙O的半径,且OA垂直OB,操作:在OB上取任意一点P,AP的延长线交⊙O于C,过点C作⊙O的切线CD

DC=DP.连接OC.因为CD是圆的切线,所以OC⊥CD,即∠DCP+∠ACO=90°又OA⊥OB,有∠A+∠APO=90°.OA=OC,有∠A=∠OCP,因此∠DCP=∠APO=∠DPC,于是DC=

如图,已知OA、OB是圆O的两条半径,C、D分别在OA、OB上且AD=BD求证AD=BD

证明:∵AC=BD,OAOB∴OC=OD∵∠A=∠A∴△OAD≌△OBC∴AD=BC

如图,在圆O中,半径OA垂直于OB,C是OB的延长线上一点,AC交圆O于点D,求证:角DOA=2角C

证明:过圆心O作OE⊥AC于E∵OA=OD,OE⊥AC∴∠AOE=∠DOE=∠DOA/2(三线合一),∠A+∠AOE=90∵OA⊥OB∴∠A+∠C=90∴∠AOE=∠C∴∠DOA/2=∠C∴∠DOA=

已知在圆O中,半径OA⊥OB,弦AC⊥BD于E,求证:AD‖BC.

小呆D蘑菇T糖,你好:要证AD‖BC,需要证∠D=∠DBC,只需应用圆心角、圆周角、弧的关系便可证得.证明:∵OA⊥OB,即∠AOB=90°∴∠D=∠C=45°∵AC⊥BD,即∠BEC=90°∴∠EB

如图在半径为4的圆O中,AB.CD是两条直径,M为OB的中点,CM的延长线交圆O于点E

)这是相交弦定理,连AC,EB,因∠CAB=∠CEB,又有对顶角故三角形AMC∽EMB,所以AM*MB=EM*MC2)在直角三角形CDE中,CE=√(CD^2-DE^2)=√(64-15)=7EM=A