如图,在圆O中,直径AB与弦CD相交于点P.若

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 10:51:27
如图,在圆O中,直径AB与弦CD相交于点P.若
如图,在圆O中,AB是直径,CD是弦,CE垂直CD与点c,交AB与点E,DF垂直CD,交AB与点F.求证AE=BF

证:设M为CD中点连接OM,则OM垂直于CD(垂弦定理)又因为CE垂直于CD,DF垂直于CD所以CE平行于OM平行于DF(在同一平面内,垂直于同一直线的两条直线相互平行)又因为M为CD中点(已设)所以

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P 是弧CAD上一点(不与C,D重合),求证:

⑴设弧CAD为劣弧.∵AB⊥CD,∴∠OBC=∠OBD,∵OB=OC=OD,∴∠OCB=∠OBC=∠ODB=∠OBD,∵∠P+∠CBD=180°(圆内接四边形对角互补),而∠COB+∠COB+∠OCB

如图在⊙O中,AB是直径,CD是弦,AB丄CD.点P在劣弧CD上(不与C,D重合时)∠CPD与∠COB有什么数量关系?

∠CPD+∠COB=180°,证明如下:∵∠COP=2∠CDP,  ∠DOP=2∠DCP,∴∠COP+∠DOP=2(∠CDP+∠DCP)即 ∠COD=2(∠CDP+∠DC

如图,在圆O中,AB是直径,CD是弦,AB⊥CD.(1)P是⌒CPD上一点(不与C、D重合).求证:∠CPD=∠COB

1、连接OD因为CD为弦则弦角CPD为中心角COD的二分之一又因为直径AB垂直于CD所以角COB等于∠BOD所以∠COB=∠CPD2、数量关系就是2∠COB+∠CP丿D=180°证明利用连接CP丿DP

如图,已知:在圆O中直径AB与弦AC的夹角是30度,过点C的切线交AB的延长线於D,若CD=根号3,求AC的长.

连接OC和BC可得角ACO=角CAO=30度角ABC=60度又因为CD是切线所以OC垂直CD得角D=30度AC=根号3

如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,

(1)证明:∵∠C=∠P又∵∠1=∠C∴∠1=∠P∴CB∥PD;(2)连接AC∵AB为⊙O的直径,∴∠ACB=90°又∵CD⊥AB,∴BC=BD,∴∠P=∠CAB,又∵sin∠P=35,∴sin∠CA

如图,在圆O中,直径AB=2,CA切圆O与A,BC交圆O于D,若∠C=45°,则BD的长为多少?阴影部分的面积为多少?

∵CA切⊙O于A,∠C=45°,∴△ABC是等腰直角三角形.BC=AB*√2=2√2..连接AD,则AD⊥BC,且AD=BD=BC/2=√2,因为AD弦上的弓形与BD弦上的弓形面积相等,所以阴影面积=

如图,两个半圆中,小圆的圆心O'在大⊙O的直径CD上,长为4的弦AB与直径CD平行且与小半圆相切,那么圆中阴影部分面积等

连接OB,作OP⊥AB于P.阴影部分的面积=12π•OB2-12π•OP2=12π(OB2-OP2)=12π•BP2=2π.再问:有图了,帮帮忙,谢谢!

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P 是弧CAD上一点(不与C、D重合),

因为CD和AB是垂直的,AB是直径平分CD所以2∠COB=∠CPB,2∠DPB=∠DOB因为弧BD=弧CB,所以∠COB=∠DOB因为2∠CPB=2∠BPD=∠COB所以∠CPD=∠COB∠CP’D+

如图,在圆O中,弦CD与直径AB垂直于H点,E是AB延长线上一点,CE交圆O于F点

(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.

如图,在圆O中,AB为直径,AD为弦,过点B的切线与AD的延长线相交与点C,且AD=DC,求∠ABC的度数

∵AB为直径∴BD⊥AC∴∠ABD=90°∵BC为切线∴AB⊥BC又∵AD=DC∴BD平分∠ABC即∠ABD=∠DBC=45°

如图 ab是圆o的直径,点C在园O上运动与AB两点不重合,弦CD垂直AB,CP平分∠OCD交点P.在点c的运动过程中,点

额.其实你都看到答案了,只要在进一步一点点就好了连结OP因为OC=OP所以角OCP=角OPC因为∠OCD的平分线交⊙O于P所以角DCP=角OCP所以角DCP=角OPC所以无论何时,CD平行OP又因为o

如图,在圆O中,C,D是直径AB上两点,且AC=BD,MC垂直AB

1由题很容易可以得出CO=DO连接MO,NO,MO=NO在ΔMCO和ΔNDO中,由勾股定理可以得出MC=ND所以ΔMCO≌ΔNDO所以∠MOC=∠NOD所以弧AM=弧BN(因为弧所对的圆心角相等,弧就

如图,在圆O中,AB=AC,AD是圆O的直径.试判断BD与CD

∵AD是直径∴弧ABD=弧ACD∵AB=AC∴弧AB=弧AC∴弧ABD-弧AB=弧ACD-弧AC即弧BD=弧CD∴BD=CD

如图,在圆O中,直径AB=10,C、D是上半圆AB上的两个动点.弦AC与BD交于点E,则AE?AC+BE?BD=____

连接BC,AD,根据直径所对的圆周角是直角,得∠C=∠D=90°,根据相交弦定理,得AE?CE=DE?EB∴AE?AC+BE?BD=AC2-AC?CE+BD2-BD?DE=100-BC2+100-AD

如图,在圆O中,线段AB为其直径,为什么直径AB是圆O中最长的弦

①直径是圆中最长的弦.过点A作任一弦(不与AB重合)交圆O于点K,我们证明AK小于AB即可.连接BK,则△ABK是直角三角形,∠AKB=90°,AB是斜边,所以AB大于AK.因为对于任何不与AB重合的

如图,已知直角△ABC中,∠C=90°,点O在AC上,CD为圆O直径,圆O切AB与E,若BC=5,AC=12,求圆o的半

容易推得△AEO相似△ACB又因为BC=5AC=12得AB=13设半径为xAO=AC-CO=12-x由相似得OE/BC=AO/ABx/5=(12-x)/1313x=60-5x18x=60x=10/3即