如图,在正方形ABCD中,m为ab上一点,n为bc上一点,且bm=bn
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 07:03:54
证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE
∠AFD=90º-∠ECF=∠DMC ⊿AFG≌⊿CMD(AAS),MD=FD,∠MFD=45º
由N往AE引垂线NF,交AE于F∵DM⊥MN∴∠NME+∠AMD=90°∴∠NME=∠ADM在△ADM与△FMN中∵DM=MN,∠ADM=∠FMN,∠DAM=∠MFN=90°∴△ADM≌△FMN∴AM
因为ABCD为正方形所以,AD=DC,∠FDA=∠MDC=90度因为CE⊥AF于E所以,∠ECF+∠EFC=90度又因为∠ECF+∠DMC=90度所以∠EFC=∠DMC所以三角形FDA与三角形MDC全
证明:延长CF,交DA的延长线于点P∵F是AB的中点,E是BC的中点∴BF=CE∵BC=CD,∠B=∠DCE=90°∴△BCF≌△CDE∴∠BCF=∠CDE∴∠CMD=90°∵∠P=∠BCF∴△APF
作NF垂直于CE.因为AM垂直MN,AB垂直BC所以角BAM+角AMB=角NMB+角AMB=90度所以角BAM=角NMC因为角B=角NFM=90度所以三角形ABM相似于NFMMF/NF=AB/BM=2
延长CE交DA延长线于G,可以证明三角形DCF、CBE、GAE全等,得角G=CDF所以角G+GDM=90度,故角GMD=90度,AG=ADAM是中线,AM=AG=AD
⑴ T是CD中点,OT∥EC﹙中位线﹚TM∥CB﹙TC∥=MB MBCT是平行四边形﹚ ∴平面OTM∥平面BCF  
如下:因为ABCD为正方形所以,AD=DC,∠FDA=∠MDC=90度因为CE⊥AF于E所以,∠ECF+∠EFC=90度又因为∠ECF+∠DMC=90度所以∠EFC=∠DMC所以三角形FDA与三角形M
设正方形的边长为x,则x²+x²=(2√2)²2x²=8x²=4x=2所以正方形的边长为2
连结CD1,取CD1的中点P,连结PM,PN在△CC1D1中,NP‖C1D1,∵C1D1‖CD∴NP‖CD在矩形A1BCD1中,MP‖BC∴△MNP‖平面ABCD∴MN‖平面ABCD
证明:(1)在正方形ABCD中,AB=BC=CD=4,∠B=∠C=90°,∵AM⊥MN,∴∠AMN=90°,∴∠CMN+∠AMB=90°.在Rt△ABM中,∠MAB+∠AMB=90°,∴∠CMN=∠M
图在哪证明:延长CB到M,使BM=DF,连接AM.∵AB=AD,∠ABM=∠D=90°∴△ABM≌△ADF(SAS)∴AM=AF,∠BAM=∠DAF.∴∠BAM+∠BAE=∠DAF+∠BAE=∠DAB
∠DAF=∠DCM,∠MDC=∠FDA=90°,CD=AD△CMD≌△AFDMD=FD△MDF为等腰RT三角形,∠MFD=45°
在AB上截取FB=BM过点N做NP垂直BE于P所以△FBM、三角形CNP为等腰直角三角形所以角BFM=角NCP所以角AFM=角NCM又四边形ABCD为正方形∴AB=BCAB-FB=BC-BM即AF=C
连接BA1,A1NBA1//EM,A1C1//EC所以面BA1NF//EMC因为面BFN属于面BA1NF所以平面CEN//平面BFN
证明:连接AC,交BD于O,连接MO∵四边形ABCD是正方形∴AO=CO∵M是VC的中点∴MO是△VAC的中位线∴MO//VA∵MO在面BDM内∴VA//平面BDM
(1)在正方形ABCD中,AD=DC,AE=DF,∠EAD=∠FDC,所以△EAD≌△FDC,故DE=CF,∴∠EDA=∠FCD,又∵∠DCF+∠DFC=90°,∴∠ADE+∠DFC=90°,∴∠DG
设AC、DM的交点是P,因为AM//DC,所以角PDC=角PMA,角DCP=角MAP,所以三角形DPC相似于三角形MPA所以它们的高之比h1:h2=1:2设正方形的边长为a,h1=1/3a,h2=2/