如图,在深圳河MN的同一侧
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:20:19
:延长AB交MN于点P′,此时P′A-P′B=AB,由三角形三边关系可知AB>|PA-PB|,故当点P运动到P′点时|PA-PB|最大,作BE⊥AM,由勾股定理即可求出AB的长.延长AB交MN于点P′
延长AC到A′,使A′C=AC,则A′与点A关于CD对称.连接A′B交CD于点P,连接PA,此时AP+PB的和最小.∵A′与点A关于CD对称,∴PA′=PA,∴AP+PB=A′P+PB=A′B.过点B
斜面沿水平方向匀速滑动,总动能不变机械能转化为竖直杆MN的重力势能和摩擦消耗.斜面水平长度=√(5^2-3^2)=4m水平推力做功W1=FL=120*4=480J重力势能增加W2=Gh=100*3=3
根据两点之间直线最短,做A关于直线L的对称点,称为C,连接BC,BC与直线L的交点即为P点,因为AP=CP,AP+PB=BC.
设点A关于MN的对称点是Q,连接BQ,BQ与MN的交点即为点P,此时使得PA+PB最小,铺设水管的费用最低.此时,△QMP与△BNP相似,得MP:NP=1:5,所以泵站P距离点M有4/3km.计算得P
肝脏在右侧肋骨的保护中,胰在胃的后下方,硬要比较的话应该不在同侧吧
直线坐标公式为y=kx+b,将A点关于x轴对称点(0,-2)和C点(5,2)带入得直线公式y=0.8x-2因为D在x轴上,即y=0带入得x=2.5D坐标为(2.5,0)
证明:∵等边△ACD、等边△BCE∴AC=DC,BC=EC,∠ACD=∠BCE=60∵∠ACE=∠ACD+∠DCE,∠DCB=∠BCE+∠DCE∴∠ACE=∠DCB∴△ACE≌△DCB(SAS)∴∠C
当三角形ABC是等腰三角形时.用反推法.若要四边形AEDF是菱形则AE=AF,以下就有各种边相等关系,AE=AF=ACAE=ED=BD=BC,则,AC=BC,所以若要四边形AEDF是菱形则△ABC为等
(1)相等且垂直.先证⊿MGD≌⊿MEN∴DM=NM.在RTDNF中,FM=DN/2=DM.∵NE=GD,GD=CD,∴NE=CD,∴FN=FD即FM⊥DM,∴DM与FM相等且垂直(2)相等且垂直.延
连接AB并延长,与MN交于一点,点P取在此处PA-PB最大,值为AB长度,其他点由于三角形两边差小于第三边,都比AB小作轴对称图形啥意思.
设点A关于MN的对称点是Q,连接BQ,BQ与MN的交点即为点P,此时使得PA+PB最小,铺设水管的费用最低.此时,△QMP与△BNP相似,得MP:NP=1:5,所以泵站P距离点M有4/3km.计算得P
延长AB交MN于点P′,∵P′A-P′B=AB,AB>|PA-PB|,∴当点P运动到P′点时,|PA-PB|最大,∵BD=5,CD=4,AC=8,过点B作BE⊥AC,则BE=CD=4,AE=AC-BD
如果p不在CB连线上,那么CPB三点形成三角形,即CB+BP大于cb.不是最小的再答:求满意再问:还没明白再问:即CB+BP大于cb.不是最小的?再问:字母有没写错?再答:嗯嗯,就是这个意思,只有P在
很简单呀~作A点关于直线MN的对称点A'连接A'和B,A'B与MN的交点为P,则∠MPA'=∠NPB显然∠MPA=∠MPA'所以∠MPA=∠NPB
1、以河MN为对称轴作A点{或B点}的对称点C.2、连接CB{功CA}相交于河道D.D点即为抽水站的位置.具体分析见图:C为A的对称点,B与C之间连接的线段最短{两点之间线段最短}AD=CD{因为是对
当A、B、P三点不在同一直线上时,此时三点构成三角形.∵两边AP与BP的差小于第三边AB.∴A、B、P在同一直线上,∴P到A的距离与P到B的距离之差最大,∴这个差就是AB的长,故答案为:7.
直线AB,AC被第三条直线BE所截,角A与角ACE是内错角,直线AB,CD被第三条直线AC所截,角A与角ACD是内错角.直线AB,AC被第三条直线BE所截,角B与角ACE是同位角,直线AB,CD被第三