如图,在直角三角abc形中,角c等于九十度,ac等于8米,cb等于6米
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:06:00
如图,将三角形分为两部分Y轴上半周是一部分,下半轴是一部分分别从A,B两点向X轴作垂线,得到两条高线,长度分别为3,1由AB两点坐标得出直线AB方程4X-Y+7=0,令Y=0,得出AB直线与X轴交点D
1、在ΔABC中,若sin(A+B-C)=sin(A-B+C),则ΔABC必是(B)A、等腰三角形B、直角三角形C、等腰或直角三角形D、等腰直角三角形2、已知cos(75°+α)=1/3,α为第三象限
∵PE垂直平分AB,∴PA=PB过P分别做PF⊥CB于F,PG⊥AC于G.四边形GPFC为正方形.∠GPF=90°△APG≌△BPF∠APG=∠BPF所以∠APB=90°所以△ABP为等腰直角三角形
在Rt△中∠A+∠B=90°sinA=tg(90°-A)=ctgA=cosA/sinAsin^2A=cosA1-cos^2A=cosAcos^2A+cosA-1=0cosA=(-1±√5)/2∵∠A<
证明:在RT△AHG和RT△CEG中:∠AHG=∠CEG=90°∠AGH=∠CGE(对顶角)∴RT△AHG∽RT△CEG(角角)∴∠GAH=∠GCE∵CH⊥AB,△ACB是斜边为AB的等腰RT△∴AH
http://i159.photobucket.com/albums/t145/l421013/MATH2/CM5.png
证明:因为AB=AC,角ABD=ACE,BD=CE所以有:三角形ABD全等于三角形ACE即有:AD=AE所以有三角形ADE是等腰三角形同时由于角BAC=90度,故有角ABF+FBC+ACB=90度又有
证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A
再答:看得懂吗?再问:嗯,我还有一道再答:稍等再答:再答:再答:请注意我标的角1的位置再问:给了
∵∠EAC是外角∴∠EAC=∠B+∠C∵∠B=∠C∴∠EAC=2∠C∵AD平分∠EAC∴∠DAC=2分之∠EAC=∠C∴AD平行于BC(内错角相等,两直线平行)
解题思路:等边三角形的性质以及全等三角形的性质是解决问题的关键解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prced
连接BD,分别用ASA证明△BDE≌△CDF,△BDF≌△ADE,即可将边CF转换为BE,AE转换为BF,在Rt△BEF中,用勾股定理求得EF=5
用三角形内角和等于180度来计算角A+角ABC+角C=5角A=180度角A=36度角C=角ABC=2角A=72度角DBC=角C/4=18度又角C+角DBC+角BDC=180度角BDC=180度-72度
三个分别是圆外,圆上,圆外,用勾股定理可以算出来AB=5,然后可以算出高CD=2.4再问:额,谢谢啦再答:第三个是圆内…再答:写错了,骚瑞再问:有没有详细一点的呢?再答:勾股定理你应该熟悉吧…再问:嗯
半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π
解题思路:可设P、Q两点运动t秒时,PQ有最小值,则PB=6-t,BQ=2t,根据勾股定理可求解题过程:解:设P、Q两点运动t秒时,PQ有最小值,最终答案:略
(1)以DE为对称轴,把△ADE翻折至△A'DE,连A'F.A'D=AD=BD,∠A'DE=∠ADE,∠C=∠EDF=90°,∴∠A'DF=90°-∠A'DE=90°-∠ADE=∠BDF,DF=DF,
延长CD到E使DE=CD,连接AE可用SAS证明三角形AED与三角形BCD全等,即AE=BC∵AC^2+BC^2=4CD^2∴AC²+AE²=(2DC)²∴三角形AEC为