如图,在直角坐标系中,已知点A[0,2]的点B[3,2].请你在x轴上确定点C,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 10:57:51
op');如图,在直角坐标系中,已知点A(-1,0)、B(0,2).问题描述:如图,在直角坐标系中,已知点A(-1,0)、B(0,2).如图,在直角坐标系中,已知点A(-1,0)、B(0,2),动点P
OD=√65得OM=3.2BD=5S△DOP=(BD-BP)*OM/2S=[5-(t-18)]*3.2/2S=-1.6t+36.818≤t≤23若能满足P点(8,p)Q点(q,0)存在QP所在的直线∥
\x0d\x0d百度里打字不大方便,做成了图片给你,请查看:
这道题是不是缺条件,既然是求一个四边形面积应该是封闭的再问:没有啊。条件就这些。。再答:我会了答案是1再问:求过程!QAQ再答:连接AA撇交Y轴于点cAO=A撇O=3AA撇=6同理BB撇=4OC=1根
(1)利用△ABO∽BCO∴AO/BO=BO/OC∵A(-4,0),B(0,3)∴AO=4,BO=3∴4/3=3/OCOC=9/4∵点C在x轴上∴C(9/4,0)(2)①PQ//BC时△APQ∽△AB
⑴∵ABCD是平行四边形,且AB=6,∴DC=6,又从D(0,3),CD∥AB得,C(6,3),双曲线Y=K/X(K≠0)过C(6,3),∴3=K/6,∴K=18,双曲线解析式为Y=18/X.⑵∵B、
(1)就是OA/OB=4/3,而OA长为4,所以,OB长为3,B(0,3).可设l1的方程为y=kx+3,将A的坐标代入得k=4/3,l1的方程为y=(4/3)x+3;(2)△AOC的面积为4,而OA
1)就是OA/OB=4/3,而OA长为4,所以,OB长为3,B(0,3).可设l1的方程为y=kx+3,将A的坐标代入得k=4/3,l1的方程为y=(4/3)x+3;(2)△AOC的面积为4,而OA长
27.如图11,已知正比例函数和反比例函数的图像都经过点M(-2,),且P(,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比
如图,①当点C位于y轴上时,设C(0,b).则(5)2+b2+(−5)2+b2=6,解得,b=2或b=-2,此时C(0,2),或C(0,-2).如图,②当点C位于x轴上时,设C(a,0).则|-5-a
欢迎你到“玩转数学8吧提问,竭诚为你提供免费详细解答!
分析:由A(-4,0),B(0,3),根据勾股定理得AB=5,而对△AOB连续作三次旋转变换回到原来的状态,并且第三个和第四个直角三角形的直角顶点的坐标是(12,0),所以第(7)个三角形的直角顶点的
设A(0,a),a>0,则B(-1/a,a),C(k/a,a)OB的方程:y=[a/(-1/a)]x=-a²x令x=k/a,y=-ka,D(k/a,-ka)反比例函数:y=-k²/
(1)证明:∵四边形OABC为正方形,∴OC=OA.∵三角板OEF是等腰直角三角形,∴OE1=OF1.又三角板OEF绕O点逆时针旋转至OE1F1的位置时,∠AOE1=∠COF1,∴△OAE1≌△OCF
(1)M5(-4,-4);(2)由规律可知,∴的周长是;(3)由题意知,旋转8次之后回到轴的正半轴,在这8次旋转中,点分别落在坐标象限的分角线上或x轴或y轴上,但各点“绝对坐标”的横、纵坐标均为非负数
(2,0)或者(-2,0)再问:详细点谢谢再答:aO间距离设为LP点坐标(1,4)那么三角形aOP的高为4三角形面积4=1/2*(L*4)L=2所以....
三角形的面积公式是S=½ab,P的纵坐标是4,已知面积为4,那就变成2×多少=4,由此可得A的坐标为(2,0)A也为(-1,0)脑子里应该要有概念,可是现在想这道题好累啊.我初一,这道题不难
估计您说的cosAOB=3/5应该是cosACB=3/5,因为∠AOB应该等于90°.第一步:求各点坐标.由于cos∠ACB=3/5,则OC/AC=3/5,则OC等于3,根据勾股定理,AO=4,AB&