如图,在矩形abc中mn分别是adbc的中点pq分别是bmdm的中点.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:00:12
如图,在矩形abc中mn分别是adbc的中点pq分别是bmdm的中点.
如图在矩形abcd中mn分别是AD.BC的中点,EF分别是边AD,BC的中点,EF分别是线段BM,CM的中点,请判断四边

四边形MENF为菱形  ∵M,N为AD与BC中点∴BM=CM  又∵E,F为BM与CM中点∴EN=EM(直角三角形斜边中线长度等于斜边的一半)  ∴EN=EM=FM=FN  ∴四边形MENF为菱形

已知:如图,在三角形ABC中角ACB=90度,D、E、F分别是AB、AC、BC的中点,求证:四边形CDEF是矩形

D,E分别为AB,AC中点,则DE为三角形中位线,所以DE//BC且DE=1/2BCDE平行等于BC则四边形CDEF为矩形(有一个定理来着)

如图,在等边三角形ABC中,M,N分别是边AB,AC的中点,D为MN上任意一点,CD,BD的延长

过点D作DS∥BM,DT∥CN交BC于S、T,易证MDSB、NDTC都是平行四边形,∵M、N是中点∴MN=1/2BCMD+DN=1/2BCBS+TC=1/2BC∴ST=1/2BC∵△DST是等边三角形

四边形数学题如图,在矩形ABCD中,MN分别为AD、BC的中点,P、Q分别是BM、DN的中点.(1)求证:△MBA≌△N

(1)因为四边形ABCD为矩形所以AB=CDAD=BC∠A=∠C又MN分别为AD、BC的中点所以AM=CN所以△MBA≌△NDC(2)四边形MPNQ是菱形,长方形ABCD已知AD∥BC,即MD∥BN,

已知:如图,在△ABC中,AB=AC,AD,AE分别平分∠BAC和∠CAF,AE=DC.求证:四边形ADCE是矩形

∵AB=AC,AD平分∠BAC∴AD⊥BC又∵AE平分∠FAC∠EAC=1/2∠FAC同理,∠DAC=1/2∠BAC∠EAC+∠DAC=1/2∠BAF=90°所以AE‖DC∵AE=DC∴AECD是平行

如图,在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,求证:MN⊥BD

证明:连接MB,MC∵∠ABC=90°,M是AC中点∴BM=1/2AC(直角三角形斜边中线等于斜边一半)同理MD=1/2AC∴MB=MD∵N是BD中点∴MN⊥BD(等腰三角形三线合一)

如图,在三角形ABC中,AB=AC,MN是AB的垂直平分线

∵MN是AB的垂直平分线∴AN=NB∴三角形BNC的周长=BC+BN+NC=BC+AN+NC=BC+AC∵AB=AC∴三角形BNC的周长=BC+AC=AB+BC=10cm(2)三角形BNC的周长为20

如图在矩形abcd中mn分别是adbc的中点pq分别是bmdn的中点四边形mpnq是什么样的四边

四边形MMPNQ是平行四边形证明:因为四边形ABCD是矩形所以AD=BCAD平行BC因为M,N分别是AD,BC的中点所以AM=DM=1/2ADBN=CN=1/2BC所以DM=BN所以四边形BMDN是平

已知:如图,在三角形ABC中,AB=AC,AD,AE分别平分∠BAC和∠CAF,AE=DC求证:四边形ADCE是矩形

∵AB=AC,AD平分∠BAC,∴AD⊥BC,∠DAC=1/2∠BAC,∵AE平分∠CAF,∴∠EAC=1/2∠CAF,∴∠DAE=1/2(∠BAC+∠CAF)=90°,∴AE∥BC,又AE=CD,∴

如图,在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,求证:MN⊥BD.

证明:∠ABC=∠ADC=90°,M是AC的中点∴DM=AC/2BM=AC/2(斜边上中线等于斜边的一半)DM=BM又N是BD的中点∴MN⊥BD(三合一)

如图在四边形abcd中,∠ABC=,∠ADC=90,M、N分别是AC、BD的中点,求MN和BD的位置关系

Rt△ADC中∵AM=MC∴MD=AC/2∴MB=AC/2∴MD=MB又BN=ND∴MN⊥BD

如图,在三角形ABC中,AB=AC,∠A=120º,AB的垂直平分线MN分别交BC.AB于点MN.求证:MN=

因为AB=AC,且∠A=120°,所以∠B=30°,又因为MN⊥AB,所以在直角△BNM中,MN=½BM(直角三角形中,30°所对的直角边等于斜边的一半),请采纳,谢谢.

如图,在矩形ABC中,AB=6,BC=8,沿直线MN对折,使A,C重合,直线MN交AC于O.

宝贝儿,应该把题目讲述的准确或是配上正确的图.不然没法下手.

如图,在三棱锥A-BCD中,M,N分别是三角形ABC和三角形ACD的重心,求证MN与平面BCD平行.

延长AM交BC于P,延长AN交CD于Q,连接PQ重心嘛所以有AM/MP=2AN/QN=2所以MN平行于PQPQ又在平面BCD上所以MN平行于平面BCD咯纯手打求给分~

如图,在△ABC中,CF⊥AB,BE⊥AC,M、N分别是BC、EF的中点,试说明MN⊥EF.

证明:连接MF、ME,∵CF⊥AB,在Rt△BFC中,M是BC的中点,∴MF=12BC(斜边中线等于斜边一半),同理ME=12BC,∴ME=MF,∵N是EF的中点,∴MN⊥EF.

如图,在锐角三角形ABC中,BC=8,△ABC的面积为24,M,N分别是AB,AC边上的动点,并且MN//BC,以MN为

1.如果点P恰好落在BC边上,则MN到BC距离为X/2(以MN为直径画圆)设MN到BC距离为YA到BC距离为6,(6-Y)/6=X/81=X/8+X/12得X=4.82.当XX>4.8时,Y=X^2/

如图,在△ABC中,BD,CE是角平分线,AM⊥CE,AN⊥BD,M、N分别是垂足.求证:MN∥BC

证明:延长AM交BC于P,延长AN交BC于Q∵BD平分∠ABC∴∠ABD=∠CBD∵AN⊥BD,BN=BN∴△ABN全等于△QBN∴AN=QN∴AQ=2AN∴AN/AQ=1/2同理可证:AM/AP=1

如图,在△ABC中,BD、CE是高,M,N分别是BC、DE的中点,求证:MN⊥DE

连结MD,ME.因为BD是高,所以BC是直角三角形BCD的斜边,因为M是BC的中点,所以MD=BC/2,同理ME=BC/2,所以MD=ME,三角形MDE是等腰三角形,因为N是DE的中点,所以MN垂直于

如图,在△ABC中,MN分别是BC与EF,CF⊥AB,BE⊥AC.试说明MN⊥EF

证明:连接FM,EM.∵CF⊥AB,M为BC的中点.∴FM=BC/2.(直角三角形斜边的中线等于斜边的一半)同理:EM=BC/2.∴FM=EM;又N为EF的中点.∴MN⊥EF.(等腰三角形底边的中线也

如图,在四边形ABCD中,角ABC=角ADC=90°,M,N分别是AC,BD的中点,求证MN垂直于BD

证明:连接BM、DM∵∠ABC=90,M是AC的中点∴BM=AC/2(直角三角形中线特性)∵∠ADC=90,M是AC的中点∴DM=AC/2∴BM=DM∵N是BD的中点∴MN⊥BD(三线合一)