如图,在等腰直角△abc中,acb=90,d为bc的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:39:16
(1)∠EAG=∠CAD,而∠CAD=∠ABD,所以∠EAG=∠ABD;另外∠EGA=∠ADB=90°,AE=AB,所以△ABD全等于△EAG,所以AD=EG(2)EM=MF,理由如下:过点F做FH∥
过点C作CE⊥AB交AB于点E,已知等腰直角△ACD,∴△AEC是等腰直角三角形,设CE=x,则2x2=(2)2,∴x=1,即CE=1,在直角三角形CEB中,∠B=30°,∴BC=2CE=2.
证明:在RT△AHG和RT△CEG中:∠AHG=∠CEG=90°∠AGH=∠CGE(对顶角)∴RT△AHG∽RT△CEG(角角)∴∠GAH=∠GCE∵CH⊥AB,△ACB是斜边为AB的等腰RT△∴AH
如图1,在平面直角坐标系中,等腰Rt△AOB的斜边OB在x轴上,直线y=3x-4经过等腰Rt△AOB的直角顶点A,交y轴于C点,双曲线y=k/x(x>0)也恰好经过点A.(1)求k的值;(2)如图2,
(1)证明:如图1,∵∠BAC=90°,∴∠BAD+∠DAM+∠MAE+∠EAC=90°.∵∠DAE=45°,∴∠BAD+∠EAC=45°.∵∠BAD=∠DAM,∴∠BAD+∠EAC=∠DAM+∠EA
EP=FQ,理由如下:∵Rt△ABE是等腰三角形,∴EA=BA,∵∠PEA+∠PAE=90°,∠PAE+∠BAG=90°,∴∠PEA=∠BAG,在△EAP与△ABG中,∠EPA=∠AGB=90°∠PE
答案转自:白狼射手abc|来自团队数学辅导团|五级采纳率47%擅长:数学物理学生物学化学小学教育(1)由直线ABy=(1/2)x+2,令x=0,解得y=2;令y=0,解得x=-4则点A的坐标为(-4,
(1)连接MD,则角MDA=60度,当AB绕点D顺时针旋转使得到的直线l与圆M相切时,DM⊥AB,角MDA=90度,所以,此时的旋转角是-30度(或顺时针30度).未旋转时,点D坐标(3/2,√3/2
1ADOC交点为E角ADC=AOB角AEO=DEC得角OAD=OCD所以三角形AOE∽DEC得AE:EC=OE:ED推出AE:OE=EC:ED角OED=AEC所以三角形OED∽AEC所以DOE=DAC
连接BD,分别用ASA证明△BDE≌△CDF,△BDF≌△ADE,即可将边CF转换为BE,AE转换为BF,在Rt△BEF中,用勾股定理求得EF=5
在等腰直角△ABC中,∠BAC=45°,∵旋转角为60°,∴∠CAC′=60°,∴∠BAC′=∠BAC+∠CAC′=45°+60°=105°.故选B.
∵△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,∴∠CAC′=60°,又∵等腰直角△ABC中,∠B=90°,∴∠BAC=45°,∴∠BAC′=∠BAC+∠CAC′=45°+60°=105°.
设A点的坐标为(0,m),则直线AC的斜率为:m,直线BC的斜率为:-1/m,直线BC为:1.y=-1/mx-1/my=1/2x2+1/2x-2-1/mx-1/m=1/2x2+1/2x-2mx2+(m
﹙1﹚∵ad=aeac=ab∠bac=∠dae=90°∴△abd≌△ace﹙sas﹚﹙2﹚∵abd≌△ace∴ce=bd∠dba=∠ace∵M,N分别是BD,CE的中点∴bm=cn∵bm=cn∠dba
(1)作出CD, &n
(1)选取条件:①PB=3,证明如下:在等腰直角△ABC中,∵AB=1,∴BC=1,AC=2∵PA=AC,∴PA=2在△PAB中,AB=1,PA=2,PB=3∴AB2+PA2=PB2∴∠PAB=90°
1.延长CE交BA的延长线于点F证△BCE≡△BFE(SAS)CE=EF=CF/2∠ABE=∠FCA=90°-∠F得△ABD≡△ACF∴BD=CF=2EC2.证明:延长FD到M使DM=DF得△BFD≡
(1)作AE⊥OB于E,∵A(4,4),∴OE=4,∵△AOB为等腰直角三角形,且AE⊥OB,∴OE=EB=4,∴OB=8,∴B(8,0);(2)作AE⊥OB于E,DF⊥OB于F,∵△ACD为等腰直角
1)证明:如图1,∵∠BAC=90°∴∠BAD+∠DAM+∠MAE+∠EAC=90°∵∠DAE=45°∴∠BAD+∠EAC=45°∵∠BAD=∠DAM∴∠BAD+∠EAC=∠DAM+∠EAC=45°∴
反复运用勾股定理、等量代换就可以了.PA²=(AD+PD)²1PB²=(BD-PD)²2其中AD=BDPC²=CD²+PD²=AD