如图,在菱形ABCD中,E,F分别为BC,CD的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:56:06
(1)证明:菱形ABCD中,AB=BC=CD=AD,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF.在△ABE和△ADF中AB=AD,∠B=∠D,BE=DF,∴△ABE≌△ADF(SAS).
证明:连结AC,如图∵AE=AF,∠EAC=∠FAC(对角线互相垂直且平分,并且每条对角线平分一组对角),AC=AC∴△ACE≌△ACF(SAS)∴CE=CF
证明:连接BD,AF,BE,在菱形ABCD中,AC⊥BD∵EF⊥AC,∴EF∥BD,又ED∥FB,∴四边形EDBF是平行四边形,DE=BF,∵E为AD的中点,∴AE=ED,∴AE=BF,又AE∥BF,
由AB=BC=2BE(菱形邻边相等),角AEB=90度可知角BAE=30度.故角B=60度.其余三个角则可用平行四边形性质求,角D=60度,角BAD=角BCD=120度
(1)∵四边形ABCD是菱形,∴AB=BC=AD=CD,∠B=∠D,∵点E、F分别是边BC、AD的中点,∴BE=DF,在△ABE和△CDF中,∵AB=CD∠B=∠DBE=DF,∴△ABE≌△CDF(S
连接BD交AC于M,由于ABCD为菱形,所以BD垂直于AC,且BM=DM,AM=CM且AE=CF,所以EM=FM所以BD垂直于AC,且BM=DM,EM=FM,所以DEBD是菱形
如图所示因为AD=AB AE=AF 且∠D=∠B 所以 △ADF与△ABE 是相似三角形所以∠1=∠2因为∠AFC=∠1+∠D
证明:连结BD,交AC于点O在菱形ABCD中,OA=OC,OB=OD,AB=BC,所以角BAC=角BCA又因AE=CF,所以OE=OF,又OB=OD,所以四边形DEBF为平行四边形在三角形ABE和三角
设CE=x,则BE=4-x∵四边形ABCD是矩形∴ΔABE是直角三角形∵四边形AECF是菱形∴AE=EC由勾股定理得;AB²+BE²=AE²=CE²即2
F在AB,BD之上,说明BD是一条交叉线,也就是CD和AB是平行线,所以EA=AF,也就是CEAF就是一个平行菱,那既然EA=AF,那么CE就等于CF.再问:详细解答过程。要写∵,所以再答:只有这样了
话说应该是先求证:△AED≌△DFB,然后再求证△CDG≌△CBG'吧?先证明△AED≌△DFB:因为ABCD是菱形,所以AB=AD=BD=DC=BC,所以△ABD和△DCB是全等的等边三角形.所以角
(1)证明:∵AE=PE,AF=BF,∴EF∥PB又EF⊄平面PBC,PB⊂平面PBC,故EF∥平面PBC;(2)在面ABCD内作过F作FH⊥BC于H∵PC⊥面ABCD,PC⊂面PBC∴面PBC⊥面A
延长AB,过F作FG⊥AB延长线于G∵正方形ABCD,AB=√2∴AD=BC=CD=AB=√2∴AC=√2×√2=2∵菱形AEFC∴AF=AC=2,BF∥AC∴∠FBG=∠CAB=45∵FG⊥AB∴B
解(1):由图中可知:因为ABCD为菱形,那么AC⊥BD(对角线垂直),又因为PA⊥底面ABCD,那么PA⊥BD,因为BD是底面ABCD中的一条线,所以有PA⊥BD,又AC⊥BD,那么BD⊥平面PAC
因为四边形ABCD为菱形,所以AB等于AB,CB等于CD,角ABD等于角ADC因为AE等于AF,所以BE等于DF,因为BE等于DF,CB等于CD,角ABD等于角ADC,所以三角形CBE全等于三角形CD
首先因为DEBF是菱形,所以ABC和ADC是等腰三角形,∠BAC=∠DAC=∠ACB=∠ACD(两直线平行,内错角相等)有AE=CF,由边角边的全等定理我们可以证明△ADE≌△ABE≌△CDF≌△CB
题中所说E,F分别为DB,DC?什么,没说完?再问:中点再答:中点的话,EF=1/2BC=4,BC=8.周长L=4BC=32.
AD//BE,所以△AMD∽△EMB,从而BM/DM=BE/DA;而∠BAF=∠DAE,有公共角∠EAF,所以∠BAE=∠DAF,又∠ABE=∠ADF,AB=AD,所以△ABE≌△ADF,所以BE=D
(1)AB=AD,BE=AF,∠ABE=∠ADF,所以△ABE≌△ADF所以AE=AF(2)连接AC,BD,点E.F分别为BC.CD的中点,所以EF=1/2BD,又BD=√3AB,所以EF=√3/2A
条件是BC=AD因为HE‖=1/2BC‖=GF,同理GH‖=EF,故EFGH为平行四边形,要使四边形EFGH是菱形,则EF=GH,故BC=AD