如图,在菱形abcd中,角bad=120度,点e.f分别在边ab.bc

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:52:28
如图,在菱形abcd中,角bad=120度,点e.f分别在边ab.bc
如图,在菱形ABCD中,角A=60度,对角线BD=4cm,求菱形的周长

设菱形的对角线AC、BD相交于O点则OB=BD/2=2cm,AC平分角A,则角OAB=30度,且BO垂直于OA所以:AB=2OB=2*2=4cm所以,菱形的周长=4AB=4*4cm=16cm

如图在四棱锥P—ABCD中,底面ABCD是菱形,

1、取CD中点M,连结EM、BM,BD,△DAB是正△,DF⊥AB,BM⊥CD,DF//BM,EM//PD,PD∩DF=D,EM∩BM=M,面EMB//面PDF,BE∈面BEM,故BE//平面PDF.

如图,菱形ABCD中,角B=60度,过D的直线分别于BA、BC的延长线交于E、F,AF与CE相交于

∵菱形ABCD中,∠B=60°∴设AB=BC=CD=AD=AC=x∵CD//AB∴FC/FB=CD/EB∴FC/(FC+x)=x/(x+AE)∴FC*(x+AE)=x*(FC+x)∴x^2=FC*AE

如图,在边长为M的菱形ABCD中,角DAB=60度,E是AD上不同于

设CF=X ,AE=M-X三角形BEF的面积(f(x))=菱形的面积-三角形AEB-三角形bfc-三角形EDF三角形AEB=4分之根号3乘(m-x)的平方BFC=4分之根号3乘mxEDF=4

已知:如图,在菱形ABCD中,E、F分别是BC、CD的中点.

(1)证明:菱形ABCD中,AB=BC=CD=AD,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF.在△ABE和△ADF中AB=AD,∠B=∠D,BE=DF,∴△ABE≌△ADF(SAS).

如图,在菱形ABCD中,AC=16cm,BD=12cm,求菱形的高

在菱形ABCD中,AC=16cm,BD=12cm,设菱形的4边边长为N,则:N²=(16/2)²+(12/2)²=100,N=10菱形ABCD的面积=12X16/2=96

如图,在菱形ABCD中,E,F分别是BC,CD的中点

由AB=BC=2BE(菱形邻边相等),角AEB=90度可知角BAE=30度.故角B=60度.其余三个角则可用平行四边形性质求,角D=60度,角BAD=角BCD=120度

如图,已知在菱形ABCD中.详见补充,

因为菱形ABCD所以AC,BD互相垂直平分且平分一组对角又ON⊥AD,OM⊥BC,OE⊥AB,OF⊥DC所以ON=OM=OE=OF(角平分线性质定理)

已知:如图,在菱形ABCD中,角BAD=2角B.求证:△ABC是等边三角形.

在菱形ABCD中AB=BC,AD∥BC∴∠BAD+∠B=180°∵∠BAD=2∠B∴∠B=180°÷(1+2)=60°∴△ABC是等边三角形

如图 在四边形abcd中 ad平行bc,e,f分别是BA.AB

(1)三角形DAF内角和∠DAF+∠F+∠ADF=∠DAF+2∠F=〖180〗^0;即∠DAF+2∠F=〖180〗^0(2)三角形BCE外角∠CBF=∠E+∠BCE=2∠E;已知∠ADF=∠F;由平形

如图,在菱形abcd中,ab=2,角dab=60度,

NM垂直ADAM=2再问:能具体点吗?再答:菱形两条对边垂直角dab=60度AM=2AE=AB

如图,在菱形ABCD中,BD=6,AC=8,求菱形ABCD的周长.

根据菱形的性质AC与BD垂直且互相平分所以OC=(1/2)ACOD=(1/2)BDAC=8BD=6则OC=4OD=3BD与AC垂直,所以,COD值一个直角三角形根据勾股定理OD方+OC方=CD方所以C

速回!一道初中几何:如图,菱形ABCD中,E、F分别在AB、AD上.

因为四边形ABCD为菱形,所以AB等于AB,CB等于CD,角ABD等于角ADC因为AE等于AF,所以BE等于DF,因为BE等于DF,CB等于CD,角ABD等于角ADC,所以三角形CBE全等于三角形CD

已知如图,在菱形ABCD中,初二数学,急急急!

∵AB=2,∠B=45°,AE⊥BC∴AE=BE=√2∴S△ABE=S△AB'E=1/2*√2*√2=1∵∠B'=∠OCB'=45°,BC'=2√2-2∴△B‘OC是等腰直角三角形∴S△B'OC=(√

如图,在菱形ABCD中.

AD//BE,所以△AMD∽△EMB,从而BM/DM=BE/DA;而∠BAF=∠DAE,有公共角∠EAF,所以∠BAE=∠DAF,又∠ABE=∠ADF,AB=AD,所以△ABE≌△ADF,所以BE=D

如图,在菱形ABCD中,BD=6,AC=8,求菱形ABCD的周长与面积.

答:菱形ABCD中,对角线AC和BD相互垂直平分因为:BD=6,AC=8所以:BO=DO=BD/2=3所以:菱形面积=三角形ADC面积+三角形ABC面积=AC×DO÷2+AC×BO÷2=AC×(DO+