如图,在锐角三角形 中, 为边 的中点,且 , 为 外接圆的圆心,且 .
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:16:33
【AB∶AC=BD∶CD】证明:作CE//AB,交AD延长线于E∴∠BAD=∠E,∠B=∠ECD∴△ABD∽△ECD(AA)∴AB∶EC=BD∶CD∵AD平分∠BAC∴∠BAD=∠CAD∴∠E=∠CA
证明:(1)以A点为顶点,做一条垂直于BC的高AD;∵AD=AC*sinC=bsinC∴S(△ABC)=1/2*BC*AD=1/2*absinC(2)三角形ABC的面积S=1/2absinC=1/2*
(1)当正方形DEFG的边GF在BC上时,如图(1),过点A作BC边上的高AM,交DE于N,垂足为M.∵S△ABC=48,BC=12,∴AM=8,∵DE∥BC,△ADE∽△ABC,∴DEBC=ANAM
MN⊥ED方法:连接EN,DN∵CE⊥AB∴△BEC为Rt△∵N为斜边BC中点∴EN=1/2BC=BN=NC又∵BD⊥AC∴△BDC为Rt△∵N为斜边BC中点∴DN=1/2BC=BN=NC∴EN=DN
(1)由正弦定理:(2sinA-sinC)cosB=sinBcosC2sinAcosB-sinCcosB=sinBcosCsinBcosC+sinCcosB=2sinAcosBsin(B+C)=2si
在锐角三角形ABC中,a,b,c分别为角A,B,C所对的边,且b=1/2asinC.(1)若tanA=3,求tanB;(2)求tanB的最大值解析:由正弦定理,2sinB=sinAsinC=sinAs
作法:作BAC的角平分线交BC边于点P,则点P就是所要确定的点.因为角平分线的性质告诉我们:角平分线上的任意一点到角的两边的距离相等,所以要作角平分线,而不是作线段的垂直平分线.
GF平行且等于BC的1/2,所以GF//DEEF=1/2*AB=DG(三角形ADB为直角三角形,从直角到斜边中点的连线等于斜边的一半)所以四边形DEFG是等腰梯形.希望对您有所帮助如有问题,可以追问.
由于有角平分线,求最值可利用对称啊!设N关于AD的对称点为R,由于为锐角三角形,则R必在AC上.MN=MR,并作AC边上的高BE,E在线段AC上.BM+MN=BM+MR>=BE由于面积为15,则AC边
问题是什么?再问:补充了。。再答:连接FP,DP,FQ,DQRT三角形的斜边中线长度是斜边的一半,所以在RT△BEF中FP=1/2BE,在RT△BED中DP=1/2BE,所以FP=DP在RT△ADC中
证明:连接并延长AO交BC于点D,记∠BAO为∠1,∠CAO为∠2,∠BOD为∠3,∠COD为∠4则:∠3=∠1+∠ABO∠4=∠2+∠CAO∵AO=BO=CO∴∠1=∠ABO∠2=∠CAO∴∠3=∠
是求,求证,∠EAF+∠EDF=180°?∵AD为直径.∴∠AED=∠AFD=90°.(直径所对的圆周角为直角)∴∠AED+∠AFD=180°,∠EAF+∠EDF=360°-(∠AED+∠AFD)=1
1.如果点P恰好落在BC边上,则MN到BC距离为X/2(以MN为直径画圆)设MN到BC距离为YA到BC距离为6,(6-Y)/6=X/81=X/8+X/12得X=4.82.当XX>4.8时,Y=X^2/
√3tanA-tanB=1+tanAtanB√3tan(A-B)=1tan(A-B)=√3/3A-B=30A=30+BA再问:sin(A+B)=sinC0
/sinB=c/sinC证明作BC上的高AD在直角三角形ABD中AD=AB*sinB=c*sinB在直角三角形ACD中AD=AC*sinC=b*sinC所以c*sinB=b*sinC所以b/sinB=
∵AD是直径,∴∠AED=∠AFD=90°,根据四边形AEDF内角和为360°,得∠EAF+∠EDF=180°.⑵β=1/2α.证明:∵BD=PD,AD⊥BP,∴AB=AP,∴∠DAB=∠DAP,∵∠
1) PQ恰好落在BC时 X+h=4 且 X/6=h/4 (两三角形相似)解得X=2.4 当X=2.4时 PQ恰好落在BC边上2)
√3sinA=2sinCsinA因为sinA≠0,所以sinC=√3/2因为锐角三角形,C=60度S=0.5absinC=ab√3/4=3√2/2ab=6c^2=a^2+b^2-2abcosC7=a^
延长AO到P,由外角定理:∠BOP=∠ABO+∠BAO,∠COP=∠CAO+∠ACO,由垂直平分线性质:∠ABO=∠BAO,∠CAO=∠ACO,即∠BOC=∠BOP+∠COP=∠ABO+∠BAO+∠C