如图,如图过菱形abcd的顶点做ce
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 00:01:46
:∵菱形ABCD,其顶点A,B在数轴上对应的数分别为-4和1,则AB=1-(-4)=5,∴AB=BC=5.故答案为:5.
设变长a因为BC∥AF所以BC/AF=BE/AEa/a+1=2/2+aa=根号2
(1)若∠A=90°则菱形ABCD为正方形.所以∠CDF=90°,又∠ADC=3∠F所以∠F=30°由勾股定理可得出CD=1/2CF又AD‖BC得∠BCE=∠F=30°由勾股定理可得出CB=√3/2C
连接AC、BD,AC交EF于点H,∵菱形ABCD,∴AC⊥BD,AD=AB=BC=CD,∵AE=AF,由勾股定理得:DF=BE,∴CF=CE,∴EF∥BD,∴AC⊥EF,∵AE=AF,∴EH=HF=3
(1)△AEF为直角三角形因为菱形ABCD所以AB=BC,∠ABF=∠CBF又BF=BF所以△ABF≌△CBF所以∠BAF=∠BCF因为CE⊥BC所以∠BCF=90°所以∠BAF=∠BCF=90°所以
证明:在正方形ABCD中,AC⊥BD,AC=BD,OB=1/2BD=1/2AC,又∵四边形AEFC是菱形,∴AC=CF,AC∥EF,∵EH⊥AC,∴∠BOH=∠OHE=∠OBE=90°,∴四边形BEH
二面角的度数是45°.如图,我们可以把P点看成是正方体PB'C'D'-ABCD的一个顶点,则:平面ABP就是面ABB'P,平面CDP就是平面PB'CD∵PB
∵菱形ABCD,其顶点A,B在数轴上对应的数分别为-4和1,则AB=1-(-4)=5,∴AB=BC=5.故答案为:5.
如图所示.Rt△AOD中,由勾股定理:AO²=6²-3²=27,∴AO=3√3由于菱形是中心对称图形,同时又是轴对称图形,可得各点坐标为A(0,3
DE+DF=2连接AC、BD因为在菱形ABCD中,角ABD=角EBF=60度,角BAE=角BDF=60度,AB=DB所以角ABD-角EBD=角EBF-角EBD即:角ABE=角DBF所以在三角形ABE和
填:(2,-3)菱形绕点O顺时针方向旋转180°后,A点坐标变为图中C点坐标根据对称性得(2,-3)
选A连接棱形的那条较短的对角线,易证较短的那条对角线的长度等于棱形的边长.可以看出正六边形的边长是棱形边长的三分之一.可以求得图形的边长为20cm.图形的面积:可以先求出图形一半的面积.在棱形较短的对
(1)AH=FC(AFCH是矩形),有AE=AH=CG=CF,BF=BE=HD=DG;AE=AH,∠AEH=∠AHE;BF=BE,∠BEF=∠BFE,∠B+∠BAD=180°,2∠AEH+∠BAD=1
第一、二次旋转的弧长和=60π×3180+60π×3180=2×60π×3180,第三次旋转的弧长=60π×1180,∵36÷3=12,故中心O所经过的路径总长=12(2×60π×3180+60π×1
根据菱形的性质AC与BD垂直且互相平分所以OC=(1/2)ACOD=(1/2)BDAC=8BD=6则OC=4OD=3BD与AC垂直,所以,COD值一个直角三角形根据勾股定理OD方+OC方=CD方所以C
(1)y=4/3x+8M:x=0y=4/3*0+8=8M(0,8)N:y=00=4/3x+8x=-6N(-6,0)t=0.5yQ=yM-4*0.5=8-2=6Q(0,6)P(p,0)kPQ=4/3(0
填:对角线相等的四边形根据平行四边形的判定,可得四边形EFGH是平行四边形,又知它是菱形,则AC=BD所以只能推出一定是对角线相等的四边形
过D作垂线于x轴,有勾股定理求AD=5,则菱形边长为5,则B点坐标为(5,0),C点坐标为(8,4)
AD//BE,所以△AMD∽△EMB,从而BM/DM=BE/DA;而∠BAF=∠DAE,有公共角∠EAF,所以∠BAE=∠DAF,又∠ABE=∠ADF,AB=AD,所以△ABE≌△ADF,所以BE=D
因为菱形ABCD中,AB=2,∠C=60°,所以OD=1,BD=2,AO=√3,第一次旋转60°,O绕A转动60°,经过了√3∏/3,第二次仍然是绕A转60°,又经过了√3∏/3,第三次旋转60°,半