如图,已知,在直角ABC中,角C等于90度,BE平分角ABC且交AC于D
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:55:27
C点坐标(2,-3),P点坐标(2,3),(-1,3),(-3,3),理论上,4个象限都存在这样的一个P点!再问:过程,最好有图,谢谢,第一个是(2,3)再答:C点可以是(2,-3)也可是是(2,3)
1、C点在线段AB的垂直平分线上,垂直平分线与x轴的交点即为C点;因为A(-2,-2),B(0,4),直线AB的斜率为3,所以垂直平分线斜率为-1/3,并过点(-1,1),所以线段AB的垂直平分线为y
亲,图呢?你先给图.或者把题目给全也行啊.再问:再答:(1)由题意知,此时M在BC上运动,设M点坐标为(x,0)则BC=4,AB=2,ABC面积为2×4×1/2=4又AMC面积为ABC面积一半,所以面
{1}AC的中点{2}MF⊥AC∵MF⊥AB,ME与∠AMB形成45°角又∵△EMF是直角,∴ME=MF{3}相等,因为中垂线上的一点到两边的距离相等
因原题无图,只能根据文字叙述“猜测”图形,见附图.解(1)、∵∠MBN+∠NDM=180°∴M、B、N、D四点共圆故∠DNC=∠DMB(圆内接四边形的外角等于它的内对角)作DM'⊥AB于M
答案是不是等于7啊?把三角形ABC看成是放在一个长为5宽为4的长方体里,则三角形ABC的面积就等于这个长方体的面积减去另外三个小的直角三角形的面积
(1)y=-1/2(x+1)(x-4)(2)AC直线为x+2y-4=0所以根据点到直线的具体公式而且P点在AC直线上方所以P到AC的距离为(m+2n-4)/√(1^2+2^2)S=(m+2n-4)/√
∵BC*OA/2=24BC=12∴OA=4∴OB=OA=4,∴OC=12-4=8∴A(0,4)B(-4,0)C(8,0)
2010-9-1321:09解析:两种情况,当高AD在CB的延长线上时,在Rt△ABD中,AB^2=AD^2+BD^2,得BD^2=15^2-12^2=81,∴BD=9,在Rt△ACD中,AC^2=A
⑴∠A=∠B=1/2(180°-120°)=30°,∵PN∥BC,∴α=∠MPN=30°,∴∠ACP=90°,∴ΔACP是直角三角形.⑵∵AD
过D分别作DE⊥AB,DF⊥AC垂足为E、F,易证Rt△DEM≌Rt△DFN,可得DM=DN.也因为Rt△DEM≌Rt△DFN,所以在旋转过程中,直角三角板DEF与△ABC的重叠部分四边形DMBN的面
∵S△ABC=12BC•OA=24,OA=OB,BC=12,∴OA=OB=2×24BC=4812=4,∴OC=8,∵点O为原点,∴A(0,4),B(-4,0),C(8,0).
∵∠EAC是外角∴∠EAC=∠B+∠C∵∠B=∠C∴∠EAC=2∠C∵AD平分∠EAC∴∠DAC=2分之∠EAC=∠C∴AD平行于BC(内错角相等,两直线平行)
用三角形内角和等于180度来计算角A+角ABC+角C=5角A=180度角A=36度角C=角ABC=2角A=72度角DBC=角C/4=18度又角C+角DBC+角BDC=180度角BDC=180度-72度
正三角形每个角60度,360/60=6,相当于6次一循环,所以2013/6余1相当于滚动一次为(√3/2,-1/2)
作∠ACD的平分线CE交AB于点E∵∠ACB=90°,∵CE平分∠ACD∴D是BE的中点∠A=30°∴∠ACE=∠DCE=30°∴BE=2BD=CE=AE∴∠B=60°∵∠A=30°∴AD=AE+DE
没图,我来试试.(1)A为(0,0),△ABC边长为2*sqr(3),BC∥x轴,则C应为(sqr(3),-3)(也可是(-sqr(3),-3),因为你没给图,我不知道B和C谁在左边,谁在右边,我姑且
第一题先求任意两点之间的距离(即为底边)在求过剩下的一个点到刚才那两个点所在直线的距离(即为高)这样就求出了第二个问题先联接BD,那么△ABD易求△BCD用第一题办法也易求补充学习靠个人吧!知道方法自