如图,已知:ab,ad是以ab为边向三角形abc外所作正n边形魔方格

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:18:53
如图,已知:ab,ad是以ab为边向三角形abc外所作正n边形魔方格
如图,已知ab=12,ab⊥ad,ab⊥ad,ad=5,bc=10,e是cd的中点,求ae的长

连接DB,延长DA到F,使AD=AF,连接CF.∵AD=AF=5,∴DF=BC=10,∵AB⊥BC  AB⊥AD∴BC∥AD(DF)∴四边形DFCB是平行四边形∴BD=FC∵点E是

如图:已知四边形ABCD中,AB=AD,

∵∠BAD=60°,AB=AD∴△ABD是等边三角形∴BD=AD,∠ADB=60°∵∠BCD=120°∴∠DCE=60°∵CD=CE∴△CDE是等边三角形∴CD=DE,∠CDE=60°∴∠CDE+∠B

如图已知AB//DC AD//BC 证明 1 AB=CD 2AD=BC

连接AC∵AB//DC∴∠BAC=∠DCA∵AD//BC∴∠BCA=∠DAC∵AC=CA∴△ABC≌△CDA∴AB=CDBC=AD

如图,已知AB//DC,AD//BC.证明:(1)AB=CD;(2)AD=BC

∵AB//DC,AD//BC∴四边形ABCD是平行四边形∴AB=CD,AD=BC自己写的.楼主好好看看书吧.

已知,如图,AB⊥AC,AC⊥DC,AB=CD,求证AD∥CB

在三角形ACD与三角形CAB中AB=CD角DCA=角BAC(直角)AC=CA(公共边)所以这两直角三角形全等所以角DAC=角BCAAD//CB

如图:已知梯形ABCD中,AD//BC,AB=DC,AB<AD,BC<2AD, DE//AB,在以

(1)DE→(2)ED→、DC→、CD→、BA→(3)CE→、CB→、EB→(4)CE→、CB→、AB→、BA→、DE→、ED→、DC→、CD→有什么不明白的可以继续追问,

如图,已知四边形ABCD中,AB//CD,AD//BC,求证:AB=DC

证明:因为AB//CD,AD//BC,所以四边形ABCD为平行四边形,所以AB=DC.

如图,已知AB⊥BD,CD⊥BD,AB=DC,求证AD‖BC

∵AB=CD∠ABD=∠CDBBD=BD∴△ABD≌△BCD∴∠ADB=∠DBC内错角相等∴AD∥BC

如图,AB=AD,

图呢?

已知:如图,AB⊥BD,CD⊥DB,AD=BC 求证:AB=CD

需要解答吗?再问:需要。再答: 再答:希望采纳哦,*^o^*再问:=_=你说的时候我都去学校了

=如图,已知△abc的三个顶点在以o为圆心的圆上,ad是△abc的高,ae是以o为圆心的圆上直径,求证ab×ac=ad×

连接BE∵AE为圆O直径∴∠ABE=90°∵AD为△ABC的高∴∠ADC=90°在△ABE与△ADC中,∠ABE=∠ADC,∠E=∠C(同弧所对的圆周角相等)∴△ABE∽△ADC∴AB/AD=AE/A

如图,已知线段CD垂直平分AB,AB平分∠ACD,求证:AD‖BC.

题目有误.应该是AB平分∠CAD(或CBD).如下:因为CD垂直平分AB,所以CA=CB(垂直平分线上点到线段两端距离相等);所以∠CAB=∠CBA,又AB平分∠CAD,所以,∠CAB=∠DAB=∠C

如图,已知线段CD垂直平分AB,AB平分∠DAC,求证AD‖BC

因为线段CD垂直平分AB,所以AC等于BC,∠BAC=∠B因为AB平分∠DAC,所以∠DAB=∠BAC所以∠DAB=∠B所以AD‖BC

如图,已知,线段CD垂直平分AB,AB平分∠DAC,求证AD‖BC

∵CD垂直平分AB,那么AC=BC∴∠CBA=∠CAB∵AB平分∠DAC,那么∠CAB=∠DAB∴∠CBA=∠DAB∴AD∥BC(内错角相等,两直线平行)

已知如图,AB等于AD,BC等于CD

懒得回答了再问:求求你,帮我写下过程好吗,急用再答:要给好评哦再问:太给力了,你的回答已经完美的解决了我问题!再答:再答:不懂可以问问我

已知,如图,AB=EF,BC=DE,AD=CF,求证:AB∥EF

∵AB=EF,BC=DE,AD=CF,∴AD+DC=CF+CD∴AC=DF,∴△ABC≌△FED﹙SSS﹚∴∠A=∠F∴AB∥EF﹙内错角相等,两直线平行﹚

已知:如图,AB=CD,AB‖DC.求证:AD=BC,AD‖BC.

连结AC,则:∵AB‖DC∴∠BAC=∠DCA又∵AC=CA,AB=CD∴△ABC≌△CDA∴AD=BC,∠DAC=∠BCA∴AD‖BC证毕哪里不懂,再补充吧……

已知:如图,AC/AD=AB/DE=BC/AE.求证AB=AE

∵AC/AD=AB/DE=BC/AE,∴ΔABC∽ΔDEA,∴∠B=∠DEA,∴AB=AE.再问:老师,能详细点吗??再答:三边对应成比例,两个三角形相似,相似三角形的对应角相等,等角对等边。三个步骤