如图,已知ab∥cd说明bde之间的关系,bde1e2之间的关系
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:47:42
1、∵△ABC和△BDE是等腰直角三角形(AB=AC,BE=BD)∴∠ABC=∠DBE=45°∴∠DBC=∠DBE+∠ABC=90°∵F是CD中点∴BF=1/2CD=CF=DF∴∠BCF=∠CBF2、
ab=bcbd=be∠abd=∠ebd=90°△abd≌△cbe(边角边)ad=ce
证明:过点E作EF∥AB.∵EF∥AB,∴∠A=∠AEF;又∵∠AEC=∠A+∠C,∴∠AEC=∠AEF+∠C;而∠AEC=∠AEF+∠CEF,∴∠CEF=∠C,∴EF∥CD,∴AB∥CD.再问:不能
作∠BEF=∠B,∴AB∥EF(内错角相等,两直线平行),∵∠BED=∠B+∠D,∴∠DEF=∠D,∴CD∥EF,∴AB∥CD.故答案为:内错角相等,两直线平行;∠D;EF;CD.
设ABC边长为2,bed边长则为1,根据条件算出ae等于根号3.be等于ec等于ed,同为1,且角bed等于60度,则cd等于根号3,所以ae等于cd再答:��ӷ�����再问:������再答:ôô
过E点向右作EF//AB(F点在E点右边哦)因为EF//AB所以∠B=∠BEF(两直线平行,内错角相等)因为∠B+∠D=∠BED=∠DEF+∠BEF所以∠D=∠DEF所以CD//EF(内错角相等,两直
∵BC⊥AD,∴∠BDC+∠BCD=90°,∵AF⊥CD,∴∠BDC+∠BAE=90,∴∠BAD=∠BAE,∵AB=BC,∠ABE=∠CBD=90°,∴ΔABE≌ΔCBD,∴BE=BD,∴ΔBED是等
证明:RT△ABE和RT△CFE中:∠ABE=∠CFE=90°∠AEB=∠CEF所以:∠BAE=∠FCEAB=BC∠ABE=∠CBD=90°所以:RT△ABE≌RT△CBD所以:BE=BD所以:△BE
证明:过点E作EF∥AB(点F在B、D一侧)∵EF∥AB∴∠B=∠FEB(内错角相等)∵AB∥CD∴EF∥CD(平行于同一直线的两直线平行)∴∠FEC=∠D(内错角相等)∵∠BED=∠FEB+∠FEC
证明:∵△ABC是等边三角形,∴AB=BC,∠ABE=60°又∵△BDE是等边三角形,∴BE=BD,∠DBE=60°,∴∠ABE=∠DBE,∴在△ABE和△CBD中,AB=BC∠ABE=∠DBEBE=
∠B+∠E+∠D=360过E作EF平行AB(F在E左边)因为AB‖EF(已做),所以∠ABE+∠BEF=180(两直线平行,同旁内角互补)因为AB‖CD(已知),AB‖EF.所以CD‖EF(平行同一直
对,等式性质.等式两边同加或减一个等量,等式值不变再问:性质1吗再答:等式性质好像只有一个....反正我只学了一个
证明:∵DE∥BC,∴∠1=∠BCD,又∠1=∠2∴∠2=∠BCD∴FG∥CD又∵CD⊥AB∴FG⊥AB.
在△ABE和△CBD中,AB=CB,BE=BD,∠ABE=∠CBD(因为△ABC和△BDE均为等边三角形),所以△ABE≡△CBD,AE=CD,因为BD=DE,BD+CD=DE+AE=AD
平行,做一条平行于AB,并且过点E,然后根据内错角相等就可以了
证明:过E点做直线l平行于直线AB 则∠1=∠B(两直线平行,内错角相等) 又∵直线AB平行于直线CD ∴直线CD平行于直线l ∴∠2=∠D(两直线平行,内错角
ef交直线cd于点n由已知ef垂直于ab知∠emb=90又因为ab//cd得∠mnd=90(两直线平行同位角相等)所以ef垂直于cd
证明:因为△BDE是等边三角形所以BE=BD又因为△ABC为等边三角形所以AB=BC则AB-BD=BC-BE,即AD=CE∠CED=180°-60°=∠ADE且DE=ED所以△CED≌△ADE所以CD
∵AB∥CD(已知)∴∠ABF=∠C(两直线平行,同位角相等)又∵∠A=∠C(已知)∴∠A=∠ABF(等量代换)∴AD∥BC(内错角相等,两直线平行)