如图,已知AB为圆O的直径,PA.PC是圆O的切线,A.C为切点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 10:55:23
21.令圆心(0,0),A(-2,0),B(2,0),L:x=4,P(2cosz,2sinz)则AP与L交点为M[4,6sinz/(1+cosz)],BP与L的交点为N[4,2sinz/(cosz-1
逆推结果,角E是PEC吧?这题实际是让你证明PCO=90已知PCD=EA+DBA+E=90又有DCO=DCA+ACO=DCA+A=A+DBA所以E+DCO=90即PCD+DCO=PCO=90所以PC为
(1)证明:易知AP⊥BP,又由AA1⊥平面PAB,得AA1⊥BP,(2分)从而BP⊥平面PAA1,故BP⊥A1P;(5分)(2)延长PO交圆O于点Q,连接BQ,A1Q,则BQ∥AP,得∠A1BQ或它
(1)连接OC,因为角DB0=角COP,又因为角COP=2倍角CBO,所以角DBC=角CBO.可以证明三角形DBC与三角形CBA相似,可以得到DB:BC=CB:BA,=>BC^2=BD*BA(2)连接
(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OP//BC∴∠POA=∠CBA∵∠P=∠BAC∴∠PAO=∠ACB=90°∴PA是⊙O的切线(2)∵∠P=∠BAC,∠PAB=∠ACB∴△PAO∽△
设OP和AC交D因为知道角P=角BAC且角POA=CBA所以角OAP=90所以可以算出AP的值而且AC垂直OP说以可以算出AD的值(面积法等)且OD是AC中垂线ADX2=AC
证明:∵AB是⊙O的直径,∴∠B+∠BAC=90°,∵OP∥BC,∴∠B=∠AOP,∴∠POA+∠BAC=90°,∴∠POA+∠P=90°,∴∠OAP=180°-90°=90°,∴OA⊥AP∴PA为⊙
连接AC,BC因为AB是直径,弦CD垂直AB于P所以CP=1/2CD=4因为∠B=30°,角CPB=90度所以CB=CP/SIN30=4/0.5=8又因为角ACB=90度所以直径AB=CB/COS30
1、连接CO,直角三角形POC中,PO=2CO=1,直角边为你斜边的一半,所以角P=30度.2、连接AE,直角三角形ABE中角P=30度,BD=0.5PB=1.5,直角三角形PBD中,角EAB=30度
第一问:1)因为DC是圆O的切线,所以∠DCB=∠CAB2)因为AB是直径,所以∠BDC=∠BCA=90°3)由1)、2)可知△BCD相似于△BAC,于是BC/BA=BD/BC,即BC^2=BD*BA
先自己画个图,标准点,再看题目
(Ⅰ)建立如图所示的直角坐标系,由于⊙O的方程为x2+y2=4,…(2分)直线L的方程为x=4,∵∠PAB=30°,∴点P的坐标为(1,√3),∴lAP:y=√3/3(x+2),lBP:y=-√3(x
∵pc与圆O相切,oc为圆O半径∴pc垂直于oc,△ocp为直角三角形根据勾股定理,∴op=√3^2+4^2=5∵S△ocp=S△ocp且cd垂直于ab∴(oc*cp)/2=(cd*op)/2即(3*
∵0E=0F,∴△OEF是等腰△又AB⊥MN∴OP垂直平分底边EF,∴PF=PE∵MN是弦,AB是直径,且AB⊥MN∴AB垂直平分MN,即:pM=pNPm一pE=PN一PFME=FN再答:垂直于弦的直
题不全,而且没有图撒.再问:则P有几个再答:P点有三个。
证明:如图,连接OC;∵BC∥OP,∴∠B=∠POA,∠BCO=∠COP,∵OB=OC,∴∠B=∠OCB,∴∠COP=∠AOP;∵OC=OA,OP=OP,∴△PCO≌△PAO,∴∠OCP=∠OAP=9
连接OC,∵AB是圆O的直径,P在AB的延长线上,PD切圆O于点C.圆O半径为3,OP=2,∴PB=2-3,PA=2+3,∴PC2=PB?PA=(2?3)(2+3)=1,∴PC=1.在Rt△OCP中,
再答:不对告诉我,求采纳再问:在三角形ocp1后两步没看懂。。再问:我明是勾股,但是哪来的数据啊。。再问:哦哦哦懂了。。〒_〒再答:嗯,懂了就行
证明:连接AP∵AB是⊙O的直径∴∠APB=90°∵AB=AC∴BP=CP(等腰三角形三线合一)∵AO=BO∴OP是△ABC的中位线∴OP//AC∵PD是⊙O的切线∴PD⊥OP∴PD⊥AC