如图,已知AB是圆O的直径,BC为圆O的切线,切点为B,OC平行于弦AD

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 10:55:11
如图,已知AB是圆O的直径,BC为圆O的切线,切点为B,OC平行于弦AD
已知:如图,AB,CD是圆O的两条互相垂直的直径.求证:四边形ABCD是正方形

AC、BD是圆O的两条互相垂直的直径,所以∠AOB=∠BOC=∠COD=∠AOD=90°,AO=BO=CO=DO(=半径),所以△AOB≌△BOC≌△COD≌△AOD,∠ABO=∠BCO=∠CDO=∠

如图,已知AB是圆o的弦,AB的垂直平分线交圆o于点C,D,交A,B于点E,AB=6,DE:CE=1:3,求圆o的直径

设DE=X,则CE=3X因为弦的垂直平分线经过圆心所以CD是直径所以AE=BE=AB/2=3因为AE^2=CE*DE所以3X^2=9所以X=√3所以CD=4X=4√3即圆O的半径是4√3

如图,已知AB是圆O的直径,BC为圆O的切线,切点为B,OC平行于弦AD

(1)连接OD∵OC∥AD∴∠COD=∠ODA,∠BOC=∠OAD∵OA=OD∴∠OAD=∠ODA∴∠BOC=∠DOC∵OB=OD,OC=OC∴△BOC≌△DOC∴∠ODC=∠OBC=90°∴CD是圆

如图,ab,cd是圆o的直径,弦ce‖ab,b是弧de的中点么

∵AB∥CE,∴弧AC=弧BE,∵∠AOC=∠BOD,∴弧AC=弧BD,∴弧DB=弧EB,即点B是弧DE的中点.

如图,已知AB是圆O,直径,E是OB的中点,弦CD垂直AB于E,如果CE=3,那么直径AB长是()

E是OB中点,所以OE=1/2OB=1/2OC,由此可以得出∠OCE=30°,再用三角函数可以算出OC长2√3,那AB就是4√3,但你给的四个选项里没有.不是你打错了,就是卷子有问题.

如图,AB是圆O的直径,弦CD⊥AB于P,已知CD=8,∠B=30°,求元O的直径

连接AC,BC因为AB是直径,弦CD垂直AB于P所以CP=1/2CD=4因为∠B=30°,角CPB=90度所以CB=CP/SIN30=4/0.5=8又因为角ACB=90度所以直径AB=CB/COS30

如图,已知AB是圆O的直径,CD、AB分别是圆O的切线.切点分别为D、B,求证OC平行AD

图不对哦证明:连接OB、OD∵CD、CB是圆O的切线∴∠ODC=∠OBC=90°∵OD=OB,OC=OC∴△OBC≌△ODC∴∠COB=∠COD∵OA=OD∴∠A=∠ODA∵∠BOD=∠A+∠ODA=

如图,AB是圆O的直径,直线a,b是圆O的切线,A,B是切点,则a,b有怎么样的位置关系?

a‖b∵a是圆O切线∴a⊥AB(切线与半斤垂直)∵b是圆O切线∴b⊥AB∴a‖b(内错角相等都是90度,两直线平行)

如图AB是圆O的直径

解题思路:利用三角形相似分析解答解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/r

如图,圆O沿直线L滚动,已知圆O的半径是0.4cm,AB是圆O的一条直径,当圆O沿地面滚动时,点A,B到L的距离之和

设AC、BD为点A、B到直线l的距离线段,C、D是垂足.则ACDB构成直角梯形,AC、BD是其上下底,直径AB是腰,中位线为圆的半径∴AC+BD=2*半径=0.8

如图,AB是圆O的直径,C是圆O上一点,角BAC等于2角B,圆O的切线AP与OC的延长线相交于点P.已知PA等于6倍根号

∵AB是⊙O的直径∴∠ACB=90°∵∠BAC=2∠B∴∠BAC=60°,∠B=30°∴∠AOC=2∠B=60°(同弧所对的圆心角等于2倍的圆周角)∵OA=OC∴△OAC是等边三角形∴AC=OA∵AP

如图,已知ab是圆o直径,bc垂直于ab,

连接DB,DO.∵AB为直径,∴∠ADB=90∴AD⊥BD∵AD‖OC∴OC⊥BD又∵OD=OB∴OC为等腰△ODB的BD边垂直平分线∴∠COB=∠COD2、在△COB和△COD中OD=OBCO=CO

如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直直线AB.点P是圆O上异于A,B的任意一点,直线PA

(Ⅰ)建立如图所示的直角坐标系,由于⊙O的方程为x2+y2=4,…(2分)直线L的方程为x=4,∵∠PAB=30°,∴点P的坐标为(1,√3),∴lAP:y=√3/3(x+2),lBP:y=-√3(x

如图,已知圆O中,AB是直径,过B点作圆O的切线,在切线上任取一点C,连接CO,若AD//OC,求证CD是圆O的切线

证明:∵AD//OC∴∠COB=∠DAO【同位角相等】∠COD=∠ODA【内错角相等】∵OA=OD∴∠DAO=∠ODA∴∠COB=∠COD又∵OB=OD,OC=OC∴⊿COB≌⊿COD(SAS)∴∠C

如图,已知AB是圆O的直径,BC是圆O的切线,切点为B.OC平行于弦AD.求证:DC是圆O的切线.

OA=OD=R,∠OAD=∠ODAOC‖AD,∠ODA=∠COD,∠OAD=∠BOC即∠COD=∠BOC又OB=OD=R,OC=OC三角形COD≌三角形COBBC是圆O的切线,切点为B,即CB⊥OB则

如图,已知ab是圆o的直径,ca是圆o的切线,bd‖co,求证:cd是圆o的切线

证明:连接OD∵BD∥CO∴∠B=∠COA∵∠B=1/2∠DOA∴∠DOC=∠COA连接AD所以AD⊥BD∵BD∥CO∴∠OCD=∠BDE(E为CD延长线一点)∠DAB=∠BDE∠DAB+∠B=90°

如图,已知圆O的半径为4,CD是圆O的直径,AC为圆O的弦,B为CD延长线上的一点,∠ABC=30°,且AB=AC

(1)证明:连接AO,因为△ABC中,AB=AC,∠ABC=30°,所以∠ACB=∠ABC=30°,即∠BAC=120°,又因为OA=OC所以∠OAC=∠OCA=30°,因此∠OAB=90°,即OA⊥

如图,已知AB是圆O的直径,BC为圆O的切线,切点为B,OC平行于弦AD,OA=r

(1)证明:连接OD,∵OC//AD,∴∠DAO=∠COB,∠ADO=∠DOC∴∠DOC=∠BOC,∵DO=BO,CO=CO∴⊿CDO≌⊿CBO(SAS),∴∠CDO=∠CBO=90º即DC

已知:如图,AB,CD是圆O的两条互相垂直的直径.求证:四边形ADBC是正方形

图中四个小的直角三角形都是等腰直角三角形,并且四个皆全等.∴ABCD四边相等,每个顶角都是2×45º=90º.ADBC是正方形.