如图,已知AD是△ABC的外角∠EAC的角平分线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 10:40:16
∵AD∥BC,∴∠1=∠B,∠2=∠C,∵∠1=∠2,∴∠B=∠C,∴AB=AC.
∠D的度数为:70/2=35°.设,∠CAD=∠DAB=∠1,∠CBD=∠DBE=∠2.∠ABC=180-(∠C+2∠1),而,∠ABC=180-2∠2,则有∠C+2∠1=2∠2,∠2-∠1=∠C/2
只需要证它是等腰三角形就行.角ABD等于角ACD(同狐对同角),所以知角DBC加角DCB等于角ABC加角ACB等于角CAE,而角DAC等于角DBC(同理),角DAC等于角EAD,所以,角DCB等于角E
证明:∵AD∥BC,∴∠EAD=∠B,∠DAC=∠C.∵AD平分∠EAC,∴∠EAD=∠DAC.∴∠B=∠C.∴AB=AC.
∵∠ACB=∠CAD+∠D∠B=∠EAD-∠D∠EAD=∠CAD∴∠ACB=∠CAD+∠D>∠CAD-∠D=∠B
∠DCB=∠EAD(圆内接四边形的一个外角等于它的内接角)∠DAC=∠EAD(角平分线定义)∠DAC=∠DBC(同弧所对的圆周角相等)∴∠DCB=∠DBC∴DB=DC
证明:因为BE,BD分别平分∠ABC和∠ABM (∠ABM是∠ABC的外角),所以:∠DBE=90°而∠D=∠AEB=90°所以:四边形DBEA是矩形.所以:DE=AB而:∠AB
证明:在BA的延长线上截取AM=AC∵∠MAE=∠CAE,AE=AE,AM=AC∴△AME≌△ACE∴ME=CE在△MBE中∵EB+EM>BM∴EB+EC>AB+AC
证明:∵BD平分∠ABC∴∠ABD=∠DBC∵AB=AC∴∠ABC=∠ACB∵∠CAE=∠ABC+∠ACB=2∠ACB∴∠CAD=½∠CAE=∠ACB∴AD//BC∴∠D=∠DBC=∠ABD
∵AD∥BC,∴∠1=∠B,∠2=∠C,∵∠1=∠2,∴∠B=∠C,∴AB=AC.
∵AD∥BC∴∠1等于∠ABC∠2=∠ACB∵AD平分∠EAC∴∠1=∠2∴∠ABC=∠ACB∴△ABC为等腰三角形
证明:因为EF为BC中位线,∴AF=FC...①ED//BG...②∠FDC=∠DCG又CD为∠FCG平分线,所以∠DCG=∠DCF所以△FDC为等腰三角形FD=FC,由①,可知F为ADC的外接圆圆心
证明:分别过D作DE、DF、DG垂直于AB、BC、AC,垂足分别为E、F、G,作射线AD,∵BD平分∠CBE,DE⊥BE,DF⊥BC,∴DE=DF.同理DG=DF,∴DE=DG,∴点D在∠EAG平分线
证明:∵CE是∠ACD的平分线∴∠ACE=∠ECD∠ECD是△BCE的外角∴∠ECD=∠E+∠EBC∴∠ECD>∠EBC∴∠ACE>∠EBC即:∠EBC<∠ACE
证明:AD平分EAC,所以角EAC=DAC又因为:三角形内角和为180度既角A+B+C=180度;已知角EAD+DAC+A=180所以角B+C=角EAD+DAC由已知条件知道角B=角c所以角B=EAD
证明:(1)∵AB=AC,∴∠B=∠ACB,∵∠FAC=∠B+∠ACB=2∠ACB,∵AD平分∠FAC,∴∠FAC=2∠CAD,∴∠CAD=∠ACB,∵在△ABC和△CDA中∠BAC=∠DCAAC=A
证明:作DM⊥AE于点M,DN⊥AF于点N,DQ⊥BC于点Q∵DB平分∠EBC∴PM=PQ(角平分线上的点到叫两边距离相等)∵DC平分∠BCF∴DN=DQ(角平分线上的点到叫两边距离相等)∴DM=DN
易得∠1=∠2=∠3,∴FC=FD∴FD=FA ∴∠4=∠5∵∠2+∠4+(∠3+∠5)=180°∴∠3+∠5=90°∴AD⊥CD
∵EF是△ABC的中位线∴AF=CF;;;EF∥BC∠EDC=∠DCGCG是外角∠ACG的平分线∠DCG=∠FCD三角形FCD是等腰三角形.FC=FD=AF三角形AFD是等腰三角形∠FAD=∠FDA在