如图,已知BeCF分别是三角形ABC的AC ab边上的中线 并且相交于点O,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:50:55
如图,已知BeCF分别是三角形ABC的AC ab边上的中线 并且相交于点O,
已知如图三角形是等边三角形点D ,E分别在BC,AC上,角ADE=60度求证三角形ABD相似三角形DCE

因为:角ADC=角B+角BAD,角B=60又:角EDC=角ADC-角ADE=60+角BAD-60=角BAD因为:角B=角C=60所以:三角形ABD相似三角形DCE

如图,已知:AD是三角形ABC的角平分线,DE,DF分别是三角形ABD,三角形ACD的高,求证:AD垂直平分EF.

证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF.∴D在线段EF的垂直平分线上.在Rt△ADE和Rt△ADF中,{AD=ADDE=DF,∴Rt△ADE≌Rt△ADF.∴AE=AF.∴A点

已知,如图,在三角形ABC中,AD,AE分别是三角形ABC的高和角平分线.

方法一:∠DAE=1/2*(∠C-∠B)90°=∠DAE+∠AED=∠DAE+∠EAC+∠C=∠DAE+1/2*∠BAC+∠C=∠DAE+1/2*(180°-∠A+∠C)+∠C整理得∠DAC=1/2(

如图,ABCD是一个长为20cm,宽为10cm的长方形,BECF是正方形,DM是正方形的一条对

底AD=20cm.高=M到AD的距离=10+10/2=15cm[M是BF的中点.M到BC的距离=10/2]∴S⊿AMD=﹙1/2﹚×20×15=150﹙cm²﹚

已知:如图,AD,A1D1分别是三角形ABC与三角形A1B1C1的中线,且AB/A1B1=BC/B1C1 求三角形ABC

只AB/A1B1=BC/B1C1.不能得到三角形ABC相似于A1B1C1.题目打漏了关于AD.A1D1的条件.例如AB/A1B1=BC/B1C1=AD/A1D1.[先证明⊿ABD∽⊿A1B1D1,(∵

已知:如图,AD,AE分别是三角形ABC和三角形ABD的中线.

∵AD为△ABC的中线,AE是△ABD的中线,∴BD=CD,BE=DE,∴BE=1/2BD,BD=1/2BC;又∵AB=BD,∴BE=1/2AB,AB=1/2BC,∴BE/AB=AB/BC=1/2,∠

已知:如图,BP,CP分别是三角形ABC的外角

过点P作PM⊥AB的延长线,垂足为M,PQ⊥BC,垂足为QPN⊥AC的延长线,垂足为N∵∠MBP=∠QBP,∠PCQ=∠PCN∴PM=PQ,PQ=PN∴PM=PN∴AP平分∠BAC

已知,如图,点D、E分别是AC、AB的中点,求证:三角形ABD全等于三角形ACE

根本不能证明好不好,题目都不会写,回去洗洗睡吧再问:反正我证明不出来,且书上是这样写的。

如图,已知:CD,CF分别是三角形ABC的内角平分线和外角平分线,

∵CD为角ACB的内角平分线,所以∴∠BCD=∠ACD且∠ACD=∠ECD∴∠BCD=∠ECD∵DF‖BC∴∠EDC=∠DCB∴∠EDC=∠ECD∴ED=EC∵CF三角形ABC的外角平分线∴∠ECF=

如图,已知a是三角形bcd

过M点在ABC作BC的平行线,交AB于E,交AC于F,连接DE,DF,所得平面DEF即为所求

如图,已知点EF,分别是ABC△中ACAB,边的中点,BECF,相交于点G

EF是中位线,EF平行于BC再问:请问这是什么性质,我不记得了再答:中位线定理,三角形的中位线平行于第三边并且等于它的一半

如图,在三角形ABC中,已知BD,CE分别是边AC,AB上的高,求证:三角形ADE相似于三角形ACB

∵BD,CE分别是边AC,AB上的高,∴∠ADB=∠AEC=90º,又∠A=∠A,∴⊿ADB∽⊿AEC,∴AD/AE=AB/AC,在ADE和⊿ABC中AD/AE=AB/AC,∠A=∠A,∴A

如图,在三角形ABC中,已知三角形ADE、三角形DCE、三角形BCD的面积分别是89、28、56,那么三角形DBE的

ADE面积/DCE面积=AE/CE=89/28,ACD面积/BCD面积=AD/BD=(89+28)/26=9/2,所以DBE面积=(89+28+26)*89/(89+28)*2/(2+9)=178/9

已知:如图,BD,CE分别是三角形ABC的高,M N分别是BC,DE的中点,分别连接ME,MD 求证:MN垂至于ED

证明:连接DM、EM∵M是Rt△BCD斜边上的中点∴DM=1/2BC又∵M是Rt△BCE斜边上的中点∴EM=1/2BC∴DM=EM,△DEM为等腰三角形∵N为底边DE的中点∴MN⊥DE

如图已知ad是三角形abc的角平分线,de,df分别是三角形abd中ab边和三角形acd中ac边的高.

∵AD平分∠BAC(已知)∴∠BAD=∠CAD(角平分线定义)∵DE⊥AB DF⊥AC(已知)∴∠AED=∠AFD=90°(垂直定义)在△AED与△AFD中∠EAD=∠FAD(已证)∠AED=∠AFD

直角三角形判定已知:如图,BD,CE分别是三角形ABC的高,M N分别是BC,DE的中点,分别联结ME,MD 求证:MN

BD是高所以三角行BDC是直角三角形DM是中线DM=0.5BC同理CE是高三角形BEC中EM是中线EM=0.5BC由此DM=EM三角形MDE是等腰三角形角EMD是顶角N是DE中点根据等腰三角形三线合一