如图,已知⊙O中,弧AB=2弧CD

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:22:17
如图,已知⊙O中,弧AB=2弧CD
如图,已知圆O的两条弦AB和AC,OA平分∠BAC,求证:弧AB=弧AC

连OC,OB,因为OA=OB=OC,所以∠OBA=∠OAB,∠OCA=∠OAC,又因为OA平分∠BAC,所以∠OBA=∠OAB=∠OAC=∠OCA,所以∠AOC=∠AOB,所以弧AB=弧AC

已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于D,DE是⊙O的切线.

证明:如图,连接OD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC.又∵AB=AC,∴AD是∠BAC的平分线,即∠1=∠2.∵OA=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥AC.∵DE是⊙O

(2013•闸北区二模)已知:如图,在⊙O中,M是弧AB的中点,过点M的弦MN交弦AB于点C,设⊙O半径为4cm,MN=

连接MO交弦AB于点E,(1)∵OH⊥MN,O是圆心,∴MH=12MN,又∵MN=43cm,∴MH=23cm,在Rt△MOH中,OM=4cm,∴OH=OM2−MH2=42−(23)2=2(cm);(2

如图,在圆O中,AB是弦,C为弧AB的中点,若BC=2倍的根号3,O到AB的距离为1.求圆O的半径

连接OC,交AB于D,连接OB∵C是弧AB的中点∴OC⊥AB(平分弧对直径垂直于弧所对的弦)则OD=1,设OB=OC=r,CD=r-1DB²=OB²-OD²DB²

已知:如图,圆O中,AB是直径,CO垂直AB,D是CO的中点,DE//AB,求证:弧CE=2弧AE

连接OE因为OD=1/2OC=1/2OE所以角DOE=60°则角AOE=30°圆心角的比等于所对应的弧度的比就是这样,明白没?

如图已知⊙O中弦AB,CD与弦EF相交于GH,且EG=FH,∠1=∠2,求证AB=CD

∠1∠2在哪.应该是过O点做AB和CD的中垂线(垂足分别是M、N),连接OG和OH,证明△OGM≌△OHN,证明OM=ON,从而证明AB=CD.

已知,如图,在圆O中,弦AB=CD,求证AD=BC

因为弦AB=CD,所以弧AB=CD,所以弧AD=BC,所以弦AD=BC

如图,已知扇形OACB中,∠AOB=120°,弧AB长为L=4π,⊙O′和弧AB,OA,OB分别相切于点C,D,E,求⊙

∵∠AOB=120°,弧AB长为L=4π,∴4π=120π•CO180,∴OC=6,∴OO′=6-CO′=6-DO′,∵⊙O′和弧AB,OA,OB分别相切于点C,D,E,∴∠O′DO=90°,∠DOO

已知:如图,在⊙O中,弦AD=BC.求证:AB=CD.

证明:∵AD=BC,∴AD=BC.∴AD+BD=BC+BD.∴AB=CD.∴AB=CD.

已知 如图,在圆O中AB、CD是两条直径,弦AE//CD.求证弧BE=2弧AC

连结BC∵AE//CD∴∠COA=∠BAE而∠COA=2∠CBA∴∠BAE=2∠CBA∴弧BE=2弧AC

已知:如图,圆O中,直径CD垂直弦AB于E,弦BE平行CD.求证:劣弧AB=2弧DF.(第3题)

连结cb因为bf平行于cd且ab垂直于cd所以cb=df所以弧cb=弧df因为cd是直径且垂直ab故c点评分弧ab所以弧ab=2弧cb=2弧df

如图,在⊙O中,弧AB=60°,AB=6,

(1)∵弧AB=60°,∴∠AOB=60°又∵OA=OB,∴△OAB是等边三角形,∴OA=AB=6;(2)弧AB的长l=6π×60180=2π;(3)等边△AOB的面积是:3×624=93,S扇形OA

已知:如图,⊙O中弦AB=CD.求证:AD=BC.

证明:∵AB=CD,∴AB=CD,∴AB-BD=CD-BD,∴AD=BC.

已知,如图,在⊙O中,弧AB=弧CD,∠ACB=60° 猜想∠AOB、∠BOC、∠AOC的关系,并证明

是弧AB=弧AC或弧BC吧△中任意两边相等且其中任一角为60°,则该△为等边△所以∠AOB=∠BOC=∠AOC=120°

已知,如图,在△ABC中,∠ACB=90°,CD//AB,点O是AB的中点,AB=2OD.求证:AC=BD

连接CO先证OC=OD等边对等角∵CD//AB所以``````(两对角相等)所以∠COB=∠DAB全等AC=BD这是大致过程,在自己加一点内容补完就好了

如图,已知AB、CD是⊙O的两条弦,如果AB=8,CD=6,弧AB的度数与弧CD的度数和是180°,那么图中阴影部分的总

如图:把弧CD旋转到点C与点A重合.∵弧AB和弧CD的度数和是180°,∴△ABD为直角三角形,且BD为圆的直径;∵AB=8,CD=6,∴BD=10(勾股定理),∴阴影部分的面积=S半圆-S△ABD=

已知:如图,在⊙O中,弦AB=CD.

证明:(1)∵在⊙O中,弦AB=CD,∴弧AB=弧CD,∵弧BC=弧CB,∴弧AC=弧BD;(2)∵弧AC=弧BD,∴∠AOC=∠BOD.

如图,已知⊙O中,直径CD与弦AB垂直,垂足为E,CD=10,DE=2,求AB的长

连接AO,OE=OD-ED=5-2=3AO=1/2CD=5在直角三角形AOE中根据勾股定理得到AE=4则AB=2AE=8

已知:如图,在⊙O中M,N分别为弦AB,CD的中点,AB=CD,AB不平行于CD.

证明:连接OM,ON,AO,OC,如图所示,∵M、N分别为AB、CD的中点,∴OM⊥AB,ON⊥CD,又AB=CD,∴AM=CN,在Rt△AOM和Rt△CON中,∵OA=OCAM=CN,∴Rt△AOM