如图,已知⊙O中,弧AB=2弧CD
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:22:17
连OC,OB,因为OA=OB=OC,所以∠OBA=∠OAB,∠OCA=∠OAC,又因为OA平分∠BAC,所以∠OBA=∠OAB=∠OAC=∠OCA,所以∠AOC=∠AOB,所以弧AB=弧AC
证明:如图,连接OD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC.又∵AB=AC,∴AD是∠BAC的平分线,即∠1=∠2.∵OA=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥AC.∵DE是⊙O
连接MO交弦AB于点E,(1)∵OH⊥MN,O是圆心,∴MH=12MN,又∵MN=43cm,∴MH=23cm,在Rt△MOH中,OM=4cm,∴OH=OM2−MH2=42−(23)2=2(cm);(2
连接OC,交AB于D,连接OB∵C是弧AB的中点∴OC⊥AB(平分弧对直径垂直于弧所对的弦)则OD=1,设OB=OC=r,CD=r-1DB²=OB²-OD²DB²
连接OE因为OD=1/2OC=1/2OE所以角DOE=60°则角AOE=30°圆心角的比等于所对应的弧度的比就是这样,明白没?
∠1∠2在哪.应该是过O点做AB和CD的中垂线(垂足分别是M、N),连接OG和OH,证明△OGM≌△OHN,证明OM=ON,从而证明AB=CD.
因为弦AB=CD,所以弧AB=CD,所以弧AD=BC,所以弦AD=BC
∵∠AOB=120°,弧AB长为L=4π,∴4π=120π•CO180,∴OC=6,∴OO′=6-CO′=6-DO′,∵⊙O′和弧AB,OA,OB分别相切于点C,D,E,∴∠O′DO=90°,∠DOO
证明:∵AD=BC,∴AD=BC.∴AD+BD=BC+BD.∴AB=CD.∴AB=CD.
连结BC∵AE//CD∴∠COA=∠BAE而∠COA=2∠CBA∴∠BAE=2∠CBA∴弧BE=2弧AC
连结cb因为bf平行于cd且ab垂直于cd所以cb=df所以弧cb=弧df因为cd是直径且垂直ab故c点评分弧ab所以弧ab=2弧cb=2弧df
(1)∵弧AB=60°,∴∠AOB=60°又∵OA=OB,∴△OAB是等边三角形,∴OA=AB=6;(2)弧AB的长l=6π×60180=2π;(3)等边△AOB的面积是:3×624=93,S扇形OA
证明:∵AB=CD,∴AB=CD,∴AB-BD=CD-BD,∴AD=BC.
是弧AB=弧AC或弧BC吧△中任意两边相等且其中任一角为60°,则该△为等边△所以∠AOB=∠BOC=∠AOC=120°
连接CO先证OC=OD等边对等角∵CD//AB所以``````(两对角相等)所以∠COB=∠DAB全等AC=BD这是大致过程,在自己加一点内容补完就好了
如图:把弧CD旋转到点C与点A重合.∵弧AB和弧CD的度数和是180°,∴△ABD为直角三角形,且BD为圆的直径;∵AB=8,CD=6,∴BD=10(勾股定理),∴阴影部分的面积=S半圆-S△ABD=
证明:(1)∵在⊙O中,弦AB=CD,∴弧AB=弧CD,∵弧BC=弧CB,∴弧AC=弧BD;(2)∵弧AC=弧BD,∴∠AOC=∠BOD.
连接AO,OE=OD-ED=5-2=3AO=1/2CD=5在直角三角形AOE中根据勾股定理得到AE=4则AB=2AE=8
证明:连接OM,ON,AO,OC,如图所示,∵M、N分别为AB、CD的中点,∴OM⊥AB,ON⊥CD,又AB=CD,∴AM=CN,在Rt△AOM和Rt△CON中,∵OA=OCAM=CN,∴Rt△AOM