如图,已知三角形BAD和三角形BCE都是等腰直角三角形,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:28:59
如图,已知三角形BAD和三角形BCE都是等腰直角三角形,
如图,已知AC平分角BAD,CE垂直AB于E,CF垂直AD于F,且BC=CD,说明三角形BCE全等于三角形DCF

已知AC平分角BAD,所以角ACB=角ACD;又因为:CE垂直AB于E,CF垂直AD于F,所以角ACE=角ACF,CE=CF所以角ECB=角FCD所以三角形BCE全等于三角形DCF

如图,已知AB比AD=BC比DE=AC比AE,那么三角形BAD是否与三角形CAE相似

∵AB比AD=BC比DE=AC比AE∴△ABC∽△ADE∴∠BAC=∠DAE∴∠BAD=∠CAE∵AB:AD=AC:AE∴AB:AC=AD:AE∴三角形BAD与三角形CAE相似

如图,在三角形ABC和三角形ADE中,角BAD=角CAE,∠ABC=∠ADE

△ABD∽△ACE你已经证明△ABC∽△ADE那么得AB/AC=AD/AE∠BAD=∠CAE△ABD∽△ACE(边角边)

如图,已知四边形ABCD是平行四边形,C为BD延长线上一点,连接AC、CE,使AB=AC,①求证三角形BAD≌三角形AE

⑴证明:∵ABDE是平行四边形,∴AD∥BC,AD=BC,∴∠CAE=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠CAE,∴ΔBAD≌ΔAEC(SAS).⑵过A作AF⊥BC于F,∵∠ADC=4

如图,在四边形ABCD中,已知AB=AD,三角形BAD=三角形BCD=90度,AH垂直BC,且AH=a.求四边形ABCD

做出来啦!过点A作BC的平行线AM交CD的延长线于M∵AB=AD∵∠BAH=∠DAM∵∠AHB=∠AMD=90度∴⊿ABH≌⊿ADM∴AH=AM=aS四边形ABCD=S矩形AHCM=AH*AM=a*a

如图,已知三角形abc是面积为根号三的等边三角形,三角形abc相似于三角形ade,ad等于2ad,角bad等于45度,a

这是2011•苏州中考题:原题表述:(2011•苏州)如图,已知△ABC是面积为根号3的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则

已知 如图,在四边形abcd中,ad平行bc,角bad=90度,bd垂直dc 求证:① 三角形ABD与三角形DCB相似

1、∵AD∥BC∴∠ADB=∠DBC∵∠bad=90度,bd垂直dc∴∠bad=∠BDC∴三角形ABD与三角形DCB相似2、由1得⊿ABD∽⊿DCB∴AD/BD=BD/BC∴bd平方=ad*bc

已知如图,在菱形ABCD中,∠BAD=2∠B求证三角形ABC是等边三角形

人在听么?再问:什么再答: 再答:懂不懂。?再问:第四行写的是什么再答:角BAF等于二倍的角B

如图,三角形ABC全等三角形ADE求证角BAD=角CAE

因为全等三角形,所以角BAC=角DAE;所以角BAC-角DAC=角DAE-角DAC;即角BAD=角CAE再答:给好评啊

如图:已知AC平分角BAD,AB=AD,求证:三角形ABC≌三角形ADC

如t图所示,已知:ac平分角bad 所以 ∠abc=∠dac又因为ab=ad ,ac是公共边,根据三角全等判定定理 SAS 可得 △abc≌

如图,在三角形ABD和三角形ACE中,角BAD=角CAE=90度,AD=AB,AC=AE,三角形ABE全等三角形ADC,

第一个应该是求证:△ABE≌△ACD1、证明∵∠BAD=∠CAE=90∴∠CAD=∠CAB+∠BAD=∠CAB+90,∠BAE=∠CAB+∠CAE=∠CAB+90∴∠CAD=∠BAE∵AB=AD,AC

已知如图AB=AC,AE=AD,求证:∠BAD=∠CEA 初二的全等三角形

AB=AC,AE=AD,角A=角A再答:可证ABD和ACE全等再问:谢了!

全等三角形练习题1.已知:如图,在Rt三角形ABC和Rt三角形BAD中,AB为斜边,AC=BD,BC、AD 相交于点E.

(1)在三角形ACB与三角形BDA中AC=BD角CAB=角DBAAB=BA所以三角形ACB全等于三角形BDA.(SAS)所以角ABC=角DAB.因为角CAB=角CAD+角DAB角DBA=角DBE+角E

如图,已知角BAD=角CDA,AB=DC,求证:三角形AED是等腰三角形

由:AB=DC,角BAD=角CAD,AB=DC,可证三角形ABD与三角形ADC全等(SAS)所以角EAD=角EDA,所以AE等于AD,所以三角形AED为等腰三角形

如图 已知点B在线段AE上 三角形ABC和三角形BDE均为等边三角形 连接AD CE 若角BAD=39° 那么角BCE等

也是39度,∵AB=CB,∠ABD=∠CBE=180°-60°=120°BD=BE∴△ABD≌△CBE∴∠BCE=∠BAD=39°