如图,已知三角形DEO与三角形ABO是位似三角形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:46:44
如图,已知三角形DEO与三角形ABO是位似三角形
如图,已知:三角形ABC中,BC

∵ED垂直且平分AB,∴BE=AE.∵BE+CE+BC=15cm∴AE+CE+BC=15cm即AC+BC=15cm∵AC=9cm∴BC=6cm

如图1已知三角形ABC与三角形ADE是等腰直角三角形角BAC=角DAE=90度

如图: 线段BD绕A逆时针旋转90º,到达CE.B到达C,D到达E.∴BD=CE, BD⊥CE.

已知:如图,四边形ABCD的对角线AC与BD相交于点O 求S三角形AOB:S三角形AOD=S三角形COB:S三角形COD

证明:作AE垂直BD于E,则:S⊿AOB:S⊿AOD=(BO*AE/2):(OD*AE/2)=BO:OD;------------(1)同理可证:S⊿BOC:S⊿COD=BO:OD.---------

如图,已知三角形ABC.只用直尺和圆规画一个与ABC全等的三角形,说明理由

先用直尺量出AB的长度并在纸上画出与AB等长的线段A'B',然后以A'、B'为圆心AC、BC的长为半径画两个圆,两圆其中一个交点就是要找的C',连接A'C'、B'C',所得的三角形A'B'C'即为要画

如图,三角形OAB与三角形ODC是位似图形

(1)平行证明∵△OAB∽△ODC∴∠A=∠D∴AB//CD(内错角相等,两直线平行)(2)相似比=OB/OC=3/4OA/OD=3/4OA=3.6*3/4=2.7

如图,在三角形ABC中已知AB=AC=5,BC=6,切三角形ABC全等于三角形DEF,将三角形DEF与

抱歉!原题不完整,无法直接解答.请审核原题,追问时补充完整,

如图,已知三角形ABC全等三角形DCB,AC与DB相交于点P.判断三角形ABP与三角形DCP是否全等

证明:∵△ABC全等于△DCB∴∠DCB=∠ABC,AB=CD∵AB∥DC∴∠CDA=∠BAD∴△ABP全等于△DCP(ASA)

已知:如图,四边形ABCD的对角线AC与BD相交于点O 求证:S三角形AOB/S三角形AOD=S三角形COB/S三角形C

作BH垂直AC于H,DQ垂直AC于Q,S三角形AOB=AO*BH/2,S三角形AOD=AO*DQ/2,S三角形COB=CO*BH/2,S三角形COD=CO*DQ/2,S三角形AOB/S三角形AOD=B

相似三角形黄金分割~1.已知:如图,四边形ABCD的对角线AC与BD相交与点O求证:S三角形AOB/S三角形AOD=S三

1.因为S三角形AOB/S三角形AOD=[(1/2)AO*BO]/[(1/2)AO*DO]=BO/DOS三角形BOC/S三角形COD=[(1/2)CO*BO]/[(1/2)CO*DO]=BO/DO因为

如图,已知三角形ABD相似三角形ACE,求证三角形ABC相似三角形ADE

没图片吗,天马行空很难啊.再问:撒比,不会打拉到。你滚吧!再答:∵ABC相似于三角形ADE∴AD:AC=AB:AE∵∠DAB=∠CAE∴三角形ABD相似于三角形ACE

如图,已知a是三角形bcd

过M点在ABC作BC的平行线,交AB于E,交AC于F,连接DE,DF,所得平面DEF即为所求

如图,已知三角形ABD全等三角形ACE,BE与CD相等吗,为什么?

BE=CD,因为三角形ABC全等三角形ACE,所以AD=AE,∠D=∠E,AC=AB所以CD=AD-AC,BE=AE-AB,所以CD=BE所以三角形CDO全等三角形BEO所以BE=CD

已知,如图,在三角形ABC中,

∵∠EAC是外角∴∠EAC=∠B+∠C∵∠B=∠C∴∠EAC=2∠C∵AD平分∠EAC∴∠DAC=2分之∠EAC=∠C∴AD平行于BC(内错角相等,两直线平行)

如图,已知三角形ABC,用尺规作一个三角形,使作出的三角形与三角形ABC相似并且相似,

已知ΔABC,求作:ΔADE,使ΔADE∽ΔABC,且AD:AB=2:1. 作法:1、延长AB,在射线AB上截取BD=AB,2、延长AC,在射线AC上截取CE=AC,3、连接DE,则ΔADE

已知:如图,在三角形ABC中,

用三角形内角和等于180度来计算角A+角ABC+角C=5角A=180度角A=36度角C=角ABC=2角A=72度角DBC=角C/4=18度又角C+角DBC+角BDC=180度角BDC=180度-72度

如图,已知三角形abc中

解题思路:过A作AD⊥BC于D,设BD=x,则CD=BC-BD=7-x,根据勾股定理计算出BD,得AD=BD,从而求出∠B解题过程:

已知,如图,三角形ABC中,

来图我告诉你.∵∠DCE=∠D+∠DBE∠ACE=∠A+∠ABE又∵∠DCE=1/2∠ACE∠DBE=1/2∠ABE∴∠A=∠ACE-∠ABE=2(∠DCE-∠DBE)=2∠D∴∠D=1/2∠A=1/