如图,已知二次函数y=ax² 二分之三x c的图像

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:56:37
如图,已知二次函数y=ax² 二分之三x c的图像
已知二次函数y=x2+ax+a-2.

(1)令y=0,则x²+ax+(a-2)=0△=a²-4(a-2)=a²-4a+8=(a-2)²+4>0∴x²+ax+(a-2)=0总有两个实数根,即

已知二次函数y=x2+ax+a-2

设2根为:x1,x2;由已知得:|x1-x2|=√13由二次函数解析式得:x1+x2=-a;x1*x2=a-2(这是根据韦达定理)所以有,(x1-x2)^2=13=(x1+x2)^2-4x1*x2=a

如图,已知二次函数y=ax^2+bx+c的图像经过A(-1,0),B(3,0 )

|y-4|/√2这个式子是求一点到某直线的距离的.算法是做一条经P点与直线CD垂直的直线,设交予点O,X=1这条直线与直线CD交予点Q,那么P到CD的距离就是PO的长度.在直角三角形OPQ里PQ的长度

已知:如图,二次函数y=ax²+bx+c的图像与x轴交于a,b两点,其中a点坐标为

⑴∵二次函数y=ax²+bx+c的图像经过(﹣1,0),(0,5),(1,8),∴a-b+c=0c=5a+b+c=8解得a=﹣1,b=4,c=5∴抛物线的解析式为y=﹣x²+4x+

如图,已知二次函数y=ax²-4x+c的图象与坐标轴交于点A(-1,0)和点B(0,-5)

(1)直接把A,B的坐标带入函数得:y=x2-4x-5.(2)由题意得,这个p点肯定位于顶点位置,故先把对称轴求出来,即x=2.再把x=2带入由(1)得的函数解析式中,p(2,-9).

已知二次函数y=ax^2+bx+c(a

函数经过点C,所以at²+bt+c=2.①设A(x1,0)B(x2,0)根据韦达定理,x1+x2=-b/a,x1x2=c/a因为AC垂直BC,所以2/(t-x1)*2/(t-x2)=-1,即

已知二次函数y=ax平方+bx+c(a

由图像恒不在x轴下方可知:开口向上,a>0,a+b+c为x=1时的函数值,图像恒不在x轴下方,所以当x=1,y≥0又∵a<b∴b-a>0∴(a+b+c)/(b-a)≥0∴m<0,可使该式成立.

如图,已知二次函数y=x平方-2x-1的图像的顶点为a,二次函数y=ax平方+bx的图像与x轴交与原点o及另一点c

(1)y=x^2-2x-1=(x-1)^2-2,∴A的坐标为(1,-2).∵二次函数y=ax2+bx的图象经过(0,0).顶点在二次函数y=x2-2x-1图象的对称轴上∴点C和点O关于二次函数y=x2

已知二次函数y=x平方+ax+a-2.

我刚刚回答过∵△=a2-4(a-2)=a2-4a+8=(a-2)2+4>0,∴不论a为何实数,此方程总有两个不相等的实数根.设x1、x2是y=x2+ax+a-2=0的两个根,则x1+x2=-a,x1&

已知二次函数y=ax²+bx+c的图像如图

y=a(x+b/(2a))^2+c-(b^2)/(4a)则对称轴为x=-b/(2a)M坐标(-b/(2a),c-(b^2)/(4a))设两解为:x1、x2OA·OB=(-b/(2a)-x1)(x2+b

如图,已知二次函数y=x的平方-2x-1的图像的顶点为A.二次函数y=ax的平方+bx的图像与x交于原点O及另一点C,它

(1)A点可以根据顶点式求出(b/2a,4ac-b^2/4a)算出点A(1,-2)y=ax²+bx的顶点在y=x²-2x-1的对称轴上,所以第二个函数的对称轴也是x=1,又因为该函

数学二次函数 已知二次函数y=x²+ax+a-2

1、判别式b^2-4ac=a^2-4(a-2)=a^2-4a+8由题可知,我们要证a^2-4a+8>0成立即,a^2-4a+8的对称轴为-b/2a=2,在对称轴上最低点为(2,4)最低点都为正,那么整

已知二次函数y =ax^2 + bx +c

证明:因为:a=2,所以:y=2x^2+bx+c因为:图像经过(p,-2),开口向上所以:△=b^2-8c>0.…⑴因为:图像经过(p,-2),且a>0所以:(4ac-b^2)/4a=0…⑵因为:b+

如图,已知二次函数y=ax*2+bx+c的图像经过A(1,0),B(5,0),C(0,5)三点.

(1)题意得a+b+c=025a+5b+c=0c=5∴a=1b=-6c=5∴y=x²-6x+5(2)∵E在二次函数上,∴当x=4时,m=16-24+5=-3,E(4,-3)S=1/2*5*5

如图,二次函数y=ax²+bx+c的图像经过

⑴由己知条件得9a+3b+c=0,a-b+c=0,c=3,解之,得a=﹣1,b=2,c=3;∴y=﹣x²+2x+3;⑵y=﹣x²+2x+3=﹣﹙x²-2x+1-1﹚+3=

如图,已知二次函数y=ax^2-2ax+3(a

(1)设平移后的直线的解析式为:y=3x+b∵直线y=3x+b过P(1,4),∴b=1,∴平移后的直线为y=3x+1∵M在直线y=3x+1,且设M(x,3x+1)①当点M在x轴上方时,有(3x+1)/

已知二次函数y=ax²-5x+c的图像如图,求此函数的解析式

由于函数过(0,1),(0,4)点,所以能写成y=a(x-1)(x-4)的形式y=a(x-1)(x-4)=ax²-5ax+4ax系数为-5,故a=1所以,y=x²-5x+4