如图,已知抛物线y=1 2x2 bx c图象经过a(-1,0),B(4,0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:43:55
如图,已知抛物线y=1 2x2 bx c图象经过a(-1,0),B(4,0)
如图,已知抛物线y=(1/2)x^2+bx+c如图,已知抛物线y=1/2+bx+c与x轴交于A(-4,0)和B(1,0)

由A(-4,0,)B(1,0)可得y=(1/2)x^2+1.5x-2,当x=0时,y=-2,则C:(0,-2)①当AE=AC时,AE=AC=根号下((-4)^2+(-2)^2)=2根号5,因为A:(-

如图,已知二次函数y=ax2的图像经过点根号2,3/2,求抛物线函数解析式2求抛物线上的

(1)已知二次函数y=ax2的图像经过点根号2,3/2,求抛物线函数解析式y=0.75x2(2)求抛物线上的纵坐标等于3的点的坐标,x=2或x=-2(-2,3)和(2,3)(3)当x在什么范围内时,y

已知抛物线y=12x

∵抛物线y=12x2+bx经过点A(4,0),∴12×42+4b=0,∴b=-2,∴抛物线的解析式为:y=12x2-2x=12(x-2)2-2,∴抛物线的对称轴为x=2,∵点C(1,3),∴作点C关于

如图,已知抛物线x2=4y,过抛物线上一点A(x1,y1)(不同于顶点)作抛物线的切线l,并交x轴于点C,在直线y=-1

(1)证明:∵y=x24,∴y′=x2,∴kl=y′|x=x1=x12,∴l:y=x12(x−x1)+x124=x12x−x124,∴C(x12,0),设H(a,-1),∴D(a,0),∴TH:y=-

如图,已知过抛物线y^2=2px(p>0)的焦点F的直线x-my+m=0与抛物线

答:抛物线y^2=2px(p>0)的焦点F为(p/2,0)直线x-my+m=0经过焦点:p/2-0+m=0,m=-p/2再问:好聪明啊,谢谢!

如图抛物线y=ax2-8ax+12a与x轴交A、B两点,P在y轴正半轴,PB与抛物线交于C,已知C是BP的中点,∠PBO

答:1)y=ax^2-8ax+12a=a(x-2)(x-6)与x轴交点A(2,0)和B(6,0)设点P为(0,p),p>0依据题意:点C为(3,p/2)因为:∠PBO=45°所以:直线PB的斜率k=-

如图1,已知抛物线 y=ax^2 的顶点为P,A、B是抛物线上两点,AB‖x轴,△PAB是等边三角形.

(2)②先求出顶点(2,-10),然后设(2-a,-10+√3a)代入解析式解方程即可(3)设抛物线Y=a(X-m)²+n当a<0时又∵C(m-b,n-√3b)代入自己解得一个答案当a>0时

如图,已知抛物线y=ax^2+bx+c(b>0,c

因为抛物线的顶点在x轴上,所以b^2-4ac=0,所以ac=b^2/4,代入b+ac=3,解得b=2(b=-6不合题意舍去);  因为ac=1,c

如图,已知抛物线y=ax²+bx+c经过A(4,0),B(2,3),C(0,3)三点.求抛物线的解析式

1、抛物线的解析式为y=-3/8x²+3/4x+3对称轴为x=12、A点关于x=1的对称点为D(-2,0),直线BD的方程为3x-4y+6=0,它交直线x=1于M(1,9/4),此点为所求

如图 在平面直角坐标系中 已知抛物线y=ax^+2x+3(a

写大概思路行吗?4题都要写?再问:第四题再答:ED的长度为Y,可是DE怎么表示?不妨看成ED=EN-DN,ON一段是X也是E点的横坐标。先看EN是在一元二次函数上的一点,那我可以带进函数里,当ON为X

已知,如图,在平面直角坐标系xOy中,抛物线L1的解析式为y=-x²,将抛物线L1平移后得到抛物线L2,若抛物

(1)设L2的解析式为y=ax2+bx+c由题意,得c=2,-b/2a=1,a=-1所以b=2所以y=x2+x+2y=-x2+x+2=-(x-1/2)2+9/4所以抛物线的对称轴为x=1/2设L3的顶

如图,已知抛物线y=ax2+bx+c经过O(0,0)

(1)经过O,A(4,0),可表达为y=ax(x-4)经过B(3,√3):-3a=√3a=-√3/3,b=4√3/3抛物线的函数解析式:y=-√3/3(x²-4x)(2)t秒时:P(t,0)

如图,已知抛物线y=ax2+bx(a大于0)与

抛物线看不见再问:再问:会不啊?再答:思考一下再问:快点

如图,已知抛物线y =a(x-1)2+3根号3

图呢,题呢?再问:唉。。。我准备问度娘了再答:建议你用http://www.jyeoo.com/可信,标准再问:谢谢啊

如图,已知抛物线y=-x2 +3x+6交y轴于A点,点C(4,k)在抛物线上,将抛物线向右平移n个

抛物线于y轴交点为B(0,c),A(1,0),所以直线AB是y=-cx+c,与抛物线y=ax^2+bx+c联立,得到ax^2+(b+c)x=0,其判别式△=0,得到b=-c,又由于抛物线顶点为(1,m

(2013•长春一模)如图,抛物线y=x2,y=12x

∵点A的横坐标为-1,∴y=12×(-1)2=12,y=-14×(-1)2=-14,∴点A(-1,12),B(-1,-14),∴AB=12-(-14)=34,根据二次函数的对称性,BC=1×2=2,阴

如图已知抛物线y=x2+bx+c经过点(1,-5)和(-2,4) (1)求这条抛物线的解析式;

1.将点(1,-5)和(-2,4)带入抛物线y=x2+bx+c,则有-5=1+b+c和4=4-2b+c,求出b=-2,c=-4带入得出抛物线的解析式:y=x2-2x-42.设N点为(x1,y1),M点

如图,已知抛物线y=-x平方,将抛物线向上平移后,抛物线顶点D和抛物线与x轴的两个交点A、B围成△ABD,求顶点在什么位

假设B是函数平移后与X轴的右交点△ABD是等边三角形,则OD=√3OB设函数Y=-X²向上平移后解析式为:Y=-X²+C此时函数与X轴交点,代入Y=0X=±√C因为C大于O,因此O