如图,已知抛物线y=ax与直线y=kx 4交于点A(8,8)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:47:53
如图,已知抛物线y=ax与直线y=kx 4交于点A(8,8)
如图,已知抛物线y=ax^2+bx+c交x轴与A、B两点,交y轴与点C(0,8)若抛物线的对称轴为直线x=-1,且△AB

如图,已知抛物线y=ax^2+bx+c交x轴与A、B两点,交y轴与点C(0,8)若抛物线的对称轴为直线x=-1,且△ABC的面积为40,在直线BC上,是否存在这样的点Q,使得点Q到直线AC的距离为5求

已知抛物线C1:y=ax^2+bx与抛物线C2:y^2=2px(p>0)关于直线x+y=1对称

抛物线C2:y^2=2px(p>0),此抛物线焦点坐标F2为:(p/2,0),抛物线C1:y=ax^2+bx,此抛物线焦点坐标F1为:[-b/2a,(4ac-b^2+1)/4a]∵抛物线C1:y=ax

如图,已知抛物线x^2-ax+a+2与x轴交于A,B两点,与y轴交于点D(0,8),直线CD平行于x轴,叫抛物线与另一点

1、f(x)=x^2-ax+a+2,过D点f(0)=a+2=8a=62、f(x)=x^2-6x+8=8x=6C(6,8)f(x)=x^2-6x+8=0x=2,x=4A(2,0),B(4,0)PQ平行于

如图,已知抛物线y=ax^2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD交抛物线于点E(2,

(1)E(2,6),OC*AB/6AB=2/3,OC=4,C(0,4),D(0,2),AD过E(2,6)和D,AD:Y=KX+b,2K+b=6,b=2,K=2,所以,直线AD为:Y=2X+2Y=0,X

如图,已知直线AB经过x轴上的点A(2,0),且与抛物线y=ax²相交于B,C两点,已知点B的坐标为(1,1)

因为b点的坐标为(1,1),带入抛物线1=a*1a=1,抛物线为y=x^2设直线AB方程为y=kx+b点A,B带入直线AB0=2k+b1=k+bk=-1,b=2则直线为y=-x+2则另一交点C的坐标为

如图,已知直线AB经过x轴上的点A(2,0),且与抛物线y=ax²相交于B、C两点,已知B点坐标为(1,1).

A(2.0)B(1,1)所以可得抛物线方程是y=x²直线AB的方程是y=-x+2所以可以得出C点坐标,(-2,4)设D点坐标为(x,y)△AOD面积=1/2OA×y=y△OBC面积=△OAC

已知,如图,直线l经过A(4,0)和B(0,4)两点,它与抛物线y=ax²在第一象限内交于点p,又知△AOP的

直线l经过A(4.0)和B(0.4)设其解析式为y=kx+b把(4.0)和B(0.4)代入y=kx+b解得k=-1b=4所以y=-x+4设P点坐标为(x,y)因为P点在第一象限,所以x>0y>0由△A

已知,如图1,抛物线y=ax²-2ax+c(a≠0)与y轴交于点C(0,-4)

(1)将A、C坐标代入抛物线y=ax²-2ax+c得:0=9a-6a+c4=c解得:a=4/3,c=4所以抛物线解析式为y=4x²/3-8x/3+4(2)

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在此抛物线上,矩

(1)∵直线y=ax+3与y轴交于点A,∴点A坐标为(0,3),∴AO=3,∵矩形ABCO的面积为12,∴AB=4,∴点B的坐标为(4,3),∴抛物线的对称轴为直线x=2;  &n

如图,已知抛物线y=ax²与直线y=kx+4交于A(8,8)直线与X轴的交点为C,与y轴的交点为B(1)求A及

1、由于A(8,8)所以8=8k+4,则K=1/28=64a则a=1/82、令x=8,则y1=1/8*4^2=2,y2=1/2*4+4=6即D(4,2)P(4,6)所以PD=4再问:过程有点简单了吧,

如图,抛物线y=ax²+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交点B、C.

(1)y=x-3与坐标轴的两个交点为(3,0),(0,-3)设y=a(x+1)(x-3)把点(0,-3)代入得-3=a(-3),a=1y=(x+1)(x-3)所以y=x²-2x-3(2)y=

如图,抛物线y=-ax²+3ax+2.

答:抛物线方程y=-ax^2+3ax+2=-a(x-3/2)^2+2+9a/4所以抛物线对称轴x=3/2,故点C一定在对称轴的右侧.令x=0,y=2,所以点A(0,2)令y=-ax^2+3ax+2=0

(2012•鞍山三模)如图,已知抛物线y=ax2+bx+c(a>0)的顶点是C(0,1),直线l:y=-ax+3与这条抛

(1)由抛物线的顶点为(0,1),得:b=0,c=1,即y=ax2+1;由于抛物线经过P点,则有:2=ax2+1,即x2=1a;同理可得到:-ax+3=2,x=1a;故1a=(1a)2,解得a=1;所

已知抛物线y=1/4x~2和直线y=ax+1无论a取何值,抛物线与直线必有两个不同交点.

直线y=ax+1恒过定点(0,1)该定点在抛物线内,所以不论a取何值(前提是a存在),都与抛物线有两交点.

如图,已知抛物线y=ax²bx+c(a>0)的顶点是C(0,1),直线y=-ax+3与这条抛物线交于P、Q两点

由抛物线顶点为(0,1)得b=0,c=1,即抛物线方程为y=ax^2+1(a>0);联立该抛物线方程和直线方程y=-ax+3,消去x,得y=(3-y)^2/a+1,由已知(P到x轴距离为2),将y=2

(2010•石景山区二模)已知:如图,抛物线y=ax2-5ax+b+52与直线y=12x+b交于点A(-3,0)、点B,

(1)将A(-3,0)代入y=12x+b,y=ax2−5ax+b+52,得b=32,a=−16,则抛物线解析式为y=−16x2+56x+4,直线AB的解析式为y=12x+32,得:B(5,4),C(0

如图,已知直线EF‖x轴,点E的坐标是(0,-4),又知抛物线y=ax^2-2ax-3a与x轴交于A、B两点,与y轴交于

y=ax^2-2ax-3ay=a(x-3)(x+1)当y=0时x=3,x=-1A(-1,0)B(3,0)(2)与y轴交于点P(0,m)m=-3a顶点坐标(1,-4a)顶点在x轴与直线EF之间(不在EF