如图,已知直线L1比Y=2分之一x 4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:56:17
如图,已知直线L1比Y=2分之一x 4
已知直线l1:y=2x,直线l:y=3x+3.求直线l1关于直线l的对称直线l2的方程

已知直线L1与直线L,求L1关于L对称的直线L2的方程.思路一:由于两点确下一条直线,因此可以在已知直线L1上任取两P、Q,求其关于直线L的对称点P′,Q′,从而求出对称直线L的方程.思路二:由于对称

如图,已知直线L1:y=/2x+1与x轴交于点A,过点A的另一直线L2与双曲线y=-8/x(x>0)相交于点B(2,m)

)对于y=12x+1,令y=0,得:x=-2,∴A(-2,0)又点B(2,m)在y=-8x(x>0)上,∴m=-4,B(2,-4)设直线L2的解析式为:y=kx+b,则有{-2k+b=02k+b=-4

如图,直线l1的解析表达式为y=1/2x+1,且l1与x轴交与点D,直线l2经过定点A,B,直线l1,l2交于点C,在直

p点坐标是(5,-1),首先根据面积相等判断p点在x轴下方,画出三角形adp,已知A\B两点坐标直线L2的方程式可求出:Y=-X+4,.解L1、L2的二元一次方程求出C点坐标(2,2),利用三角形面积

如图,已知直线L1:y=-x+2与直线L2:y=2x+8相交于点F,L1、L2分别交x轴于点E、G,矩形ABCD顶点C、

:y=-x+2y=2x+8x=-2,y=4F点坐标:(-2,4),过F点做直线FM垂直X轴交x轴于M,MA=MF=4,△MEF是等腰直角三角形,∠GEF=45°.2.先求C点坐标,D点坐标::y=-x

如图,已知直线l1:y=-x+2与直线l2:y=2x+8相交于点F,l1、l2分别交x轴于点E、G,矩形

题目比较简单,概念问题,要把相关定义搞清楚.B点坐标(-4,0)C点在L1上,所以C(-4,6)因为ABCD为矩形所以CD||BA从而D点纵坐标为6,而D在L2上,所以D点坐标(-1,6)F点坐标:解

如图,已知直线l1;y=2/3x+8/3与直线l2y=-2x+16相交于点C ,l1、l2分别交x轴于A、B两点,矩形D

(3)、如果做出来了(1)(2),就可以得到D(8,8),E(4,8),C(5,6)原题中“矩形DEFG从原点出发”似乎应改为“矩形DEFG从原位置出发”,否则意思不明确.要分情况讨论:1、点C在矩形

如图,已知直线L1:4x+y=0,直线L2:x+y-1=0以及L2上一点P(3,-2).求圆心在L1上且与直线L2相切于

洛逸夏,你好:所求圆与直线L2相切于点P(3,-2),则圆心在过点P且垂直于L2的直线m上直线m的方程为y+2=x-3,即x-y-5=0.将直线m与直线L1的方程联立,解得圆心坐标为C(1,-4)半径

区卷,一次函数如图,已知直线l1:y=kx+b与直线l2:y=2x图像交与点A(b,2),直线l1与y轴交与B点 (1)

因为l1与l2交于点A,所以把A点带入l2得,b=1,然后再把A点带入l1,就可以把k算出来,k=1,所以直线l1:y=x+1因为直线1与y交于b点,所以把x=0带入l1,就算出B为(0,1)所以面积

(2013•燕山区一模)如图,已知直线l1:y=-x+2与l2:y=12x+12

令y=0,则-x+2=0,解得x=2,所以,P1(2,0),∵P1Q1⊥x轴,∴点Q1与P1的横坐标相同,∴点Q1的纵坐标为12×2+12=32,∴点Q1的坐标为(2,32),∵P2Q1∥x轴,∴点P

如图,已知直线L1:4x+y=0,直线L2:x+y-1=0以及L1上一点P(3,-2),求圆心在L1上且与直线L2相切于

所求圆与直线L2相切于点P(3,-2),则圆心在过点P且垂直于L2的直线m上直线m的方程为y+2=x-3,即x-y-5=0.将直线m与直线L1的方程联立,解得圆心坐标为C(1,-4)半径r=|PC|=

如图,已知直线l1的解析式为y=3x+6,直线l1与x轴、y轴分别相交于A、B两点,直线l2经过B、C两点,点C的坐标是

问题(1):设B(0,b)因为点B在l2直线上,l2解析式为y=3x+6所以b=0+6b=6所以B(0,6)又C(8,0)所以l2解析式:y=-3x/4+6(2)做QM⊥BO,QN⊥CO设点Q(q,q

已知直线L1:y=2x-1,求:L1关于x轴对称的直线L2的解析式

从L1上随便取两个点,我取的是A1(1,1)和B1(0,-1),这两个点关于x轴对称后是A2(1,-1),B2(0,1).可以求出L2的斜率为-2,再代入A2或B2,最后得出L2为y=-2x+1再问:

已知直线l1:y=2x+3,直线l2与l1关于直线y=-x对称,则直线l2的斜率为 ___ .

设直线l2的斜率为:k,直线l1:y=2x+3,的斜率为k1=2;对称轴的斜率为:-1;直线l2与l1关于直线y=-x对称,所以,-1-21+(-1)×2=k-(-1)1+k×(-1);即3=k+11

两直线l1比y=2x-1,

解题思路:本题主要根据直线方程的有关知识进行解答即可。解题过程:L1:y=2x-1,L2;y=x+1直接联立两直线方程:y=2x-1;y=x+1y=2x-1=x+1x=2y=3所以两直线L1:y=2x

如图,已知直线l1:4x+y=0,直线l2:x+y-1=0以及l2上一点P(3,-2).

(Ⅰ)设圆心为M(a,b),半径为r,依题意,b=-4a.(2分)设直线l2的斜率k2=-1,过P,C两点的直线斜率kPC,因PC⊥l2,故kPC×k2=-1,∴kPC=−2−(−4a)3−a=1,(

如图,已知直线l1:4x+y=0,直线l2:x+y-1=0以及l2上一点P(3,-2).求有圆心在l1上且与直线l2相切

∵圆心在l1上,直线l1:4x+y=0,∴设圆心坐标为(m,-4m)又∵圆与直线l2相切于点P,直线l2:x+y-1=0以及点P(3,-2).∴|m−4m−1|2=(m−3)2+(−4m+2)2即m2

如图,已知两条直线l1:x-3y+12=0,l2:3x+y-4=0,过定点P(-1,2)作一条直线l,分别与l1,l2交

由题意设所求直线l的方程为:y-2=k(x+1),联立方程可得y−2=k(x+1)x−3y+12=0,解方程组可得交点M的横坐标xM=3k−61−3k,同理由y−2=k(x+1)3x+y−4=0,可得

如图,已知直线L1:y=2分之1x+4,交x轴,y轴分别于点B、A两点;L2⊥L1于点A,交x轴于点C

(1)因为直线L1分别与X轴、Y轴交于B、A两点,所以当Y=0时,X=-8,B坐标为(-8,0);当X=0时,Y=4,所以A(0,4)假设直线L2:Y=kx+b,又由上所知,因为L2垂直于L1于点A(

已知直线L1:y=(5-3m)x+3分之2m-4与直线L2:y=2分之1x+6平行,求此直线L1的解析式

解题思路:如果平行那么斜率就应该一样也就是(5-3m)=2/1于是算出m=3/2m带入于是L1解析式y=(1/2)x-3解题过程:解:因为平行所以斜率相等即(5-3m)=2/1可得m=3/2将m带入L

如图,已知直线L1:Y=2X+3,直线L2:Y=负X+5,直线L1,L2分别交X轴于B,C两点,L1,L2相交于点A.

(1)由题意得,令直线l1、直线l2中的y为0得:x1=-32,x2=5,由函数图象可知,点B的坐标为(-32,0),点C的坐标为(5,0),∵l1、l2相交于点A,∴解y=2x+3及y=-x+5得: