如图,已知等腰△ABC中,M是BC中点,作ME⊥AB于E,连接CE,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:49:50
把直线AE、BE、AD逆时针旋转90°,则A旋转到C点,B、E对应点分别为B'、E'.△ABE全等于△CBE',BD=BD'.连接MD',下面证明D、M、D'在一条直线上.因为EB、CD'都垂直于BE
证明:过点C作CF∥ED,与DM的延长线交于点F,连接BF,可证得△MDE≌△MFC,∴DM=FM,DE=FC,∴AD=ED=FC,作AN⊥EC于点N,由已知∠ADE=90°,∠ABC=90°,可证得
联结BM,DM则BM⊥AC,DM⊥EF∵∠BMA=∠DMF=90∴∠BMA+∠AMD=∠DMF+∠AMD∴∠BMD=∠AMF∵,∠ABC=∠EDF=120°∴∠A=∠F=30AM/BM=FM/DM=√
根号2的2n-1次幂
2乘以根号2的n倍
证明:∵D、F分别为边AB,AC的中点,∴DF∥BC即DF∥GE,∵DF=BE=12BC≠GE,∴四边形DGEF是梯形,∵E、F分别边AC,BC的中点,∴EF=12AB,∵AG是BC边上的高,∴△AB
能.设圆心为O,⊙O切AB于Q,圆半径为R,那么OQ=OC=OM=R,OA=R√2,由AC=2得R+R√2=2,解出R=2√2-2,于是x=AC-CM=2-2R=2-2(2√2-2)=6-4√2≈0.
证明:在RT△AHG和RT△CEG中:∠AHG=∠CEG=90°∠AGH=∠CGE(对顶角)∴RT△AHG∽RT△CEG(角角)∴∠GAH=∠GCE∵CH⊥AB,△ACB是斜边为AB的等腰RT△∴AH
因为∠ABC=∠ACB=2∠ECB=2∠DBCBC=BC所以△DBC≌△EBC所以BE=CD因为AB=ACBE=CD所以△ADE是等腰三角形因为∠ABC=1/2(180°-∠A)∠AED=1/2(18
第一问,它始终保持是直角三角形,当它顺时旋转的最大是DA重合CE重合而在顺移过程中保持D要在AC上E要在CB上,当E在B上随着转时ME变长MD变短短到于A重合!当D在AC中线即E也在CB中线时它是等腰
考点:轴对称-最短路线问题.专题:计算题分析:本题首先要明确P点在何处,通过M关于AC的对称点M′,根据勾股定理就可求出MN的长,根据中位线的性质及三角函数分别求出AB、BC、AC的长,从而得到△AB
1)连CM,因M是AB的中点.,故∠ECM=∠B=45°,CM=BM,又BD=CE故三角形CEM与BDM全等,所以ME=MD,故:△MDE是等腰三角形.2)因∠CME=∠BMD,而CM垂直AB,故,∠
连接BD,分别用ASA证明△BDE≌△CDF,△BDF≌△ADE,即可将边CF转换为BE,AE转换为BF,在Rt△BEF中,用勾股定理求得EF=5
(1)观察结果是:当45°角的顶点与点C重合,并将这个角绕着点C在重合,并将这个角绕着点C在∠ACB内部旋转时,AE、EF、FB中最长线段始终是EF.(3分)(2)AE、EF、FB这三条线段能组成以E
证:连结AD,BE,AD,BE交于点O ∵∠ADE+∠EDC=90° &
(1)作出CD, &n
先用角边角证明CEB与BDE全等得BE=CD,AB=AC,可得AD=AE,DE平行BC,EBCD是等腰梯形
解题思路:由于∠C=90°,BC=4,AC=4,易知△ABC是等腰直角三角形,于是∠ABC=45°,又△A′B′C′是△ABC平移得到的,那么∠C=∠A′C′B′=90°,进而可求∠BOC′=45°,
因为AB=ACAD平分∠BAC,所以BD=CD因为CD=DBCE=EA所以DE//AB所以∠CED=∠CAB因为∠BAC=∠BAD+∠CAD∠CED=∠CAD+∠ADE所以∠CAD=∠ADE,所以△A
反复运用勾股定理、等量代换就可以了.PA²=(AD+PD)²1PB²=(BD-PD)²2其中AD=BDPC²=CD²+PD²=AD