如图,弦mn把⊙O分为1|3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 21:12:13
如图,弦mn把⊙O分为1|3
(2013•闸北区二模)已知:如图,在⊙O中,M是弧AB的中点,过点M的弦MN交弦AB于点C,设⊙O半径为4cm,MN=

连接MO交弦AB于点E,(1)∵OH⊥MN,O是圆心,∴MH=12MN,又∵MN=43cm,∴MH=23cm,在Rt△MOH中,OM=4cm,∴OH=OM2−MH2=42−(23)2=2(cm);(2

如图,AB是圆O中的直径,MN是弦,AE垂直MN于E,BF垂直MN于F,AB=10,MN=8求BF减AE=?请用9年纪上

在EF上取一点P,使EP=FP,连接ON,OP,AP.AP的延长线交BF于H.∵AE⊥MN,BF⊥MN∴∠HFP=∠AEP又PE=PF,对等角∴△HFP≌△AEP(ASA)∴AP=HP,AE=FH又A

如图,△ABC是内接于⊙O,AB=AC,直线MN切⊙O于点C,弦BD∥MN,AC与BD相交于点E.

(1)证明:在△ABE和△ACD中,∵AB=AC,∠ABE=∠ACD又∠BAE=∠EDC∵BD∥MN∴∠EDC=∠DCN∵直线是圆的切线,∴∠DCN=∠CAD∴∠BAE=∠CAD∴△ABE≌△ACD(

若⊙O内一条弦把圆周分为3:1两段弧,若⊙O的半径为R,那么这条弦的长为(  )

∵弦AB把圆周分为3:1两段弧,∴弦AB所围的圆心角∠AOB=90°,∵OA=OB,∴△AOB是等腰直角三角形,∴AB=2AO=2R.故选C.

如图(1)和(2),MN是⊙O的直径,弦AB、CD相交于MN上的一点P,∠APM=∠CPM.

(1)AB=CD,理由是:过O作OE⊥AB于E,OF⊥CD于F,连接OB、OD,∵∠APM=∠CPM,∠APM=∠BPN,∠CPM=∠DPN,∴∠BPN=∠DPN,∵OE⊥AB,OF⊥CD,∴OE=O

已知:如图,MN是○o的弦,AB是○o的直径,AB⊥MN,垂足为点P,半径OC、OD分别交MN于点E、F,且OE=OF

证明:△OEP全等于△OFPPE=PF由垂径定理得MP=NP∴ME=NF由垂径定理得弧AM=弧AN△OEP全等于△OFP∴∠COA=∠DOA∴弧AC=弧AD∴弧MC=弧ND

如图,弦MN把圆O分成两条弧,已知它们的度数比为4:5,若P为MN的中点,求∠MOP的度数.

根据垂径定理,OP的延长线平分弧MN,角MOP=角MON的一半=(360*4/9)/2=80度.

已知,如图,MN是⊙O的弦,AB是⊙O的直径,AB⊥MN,垂足为点P,半径OC、OD分别交MN与点E、F,且OE=OF.

证明:(1)连结OM、ON.则OM=ON有oe=of,得∠peo=∠pfo,又oa⊥MN,所以,三角形oep全等三角形ofp所以pe=pf又mp=np得me=nf(2)有(1)得me=nf又oe=of

已知:如图,⊙O的直径AB=10,P为OA上一点,弦MN过点P,且PA=2,MP=2√2,求弦MN和弦心距OD的长

∵OA=5PA=2∴OP=3PB=8∴2√2PN=2×8PN=4√2MN=6√2MD=3√2OD=√【5²-(3√2)²】=√7

如图,己知M是弧AB的中点,过点M的弦MN交AB于点C己知圆O的半径为4cm,MN=4倍根号3求(1)弧MN所对的圆心角

1.连接OM、ON,做OQ垂直于MN,交MN于点Q,OM=ON=4,MQ=NQ=2倍根号3,勾股定理得OQ=2,所以O到弦MN的距离为2.2.角ACM为60度.在RT三角形OQM中,OQ=1/2OM,

(2013•黄浦区二模)如图,MN是⊙O的直径,点A是弧MN的中点,⊙O的弦AB交直径MN于点C,且∠ACO=2∠CAO

(1)∵MN是⊙O的直径,点A是弧MN的中点,∴∠AOM=14×360°=90°,∴∠ACO+∠CAO=90°,∵∠ACO=2∠CAO,∴3∠CAO=90°,解得∠CAO=30°;(2)过点O作OD⊥

如图,在⊙O中,AB是直径,P为AB上一点,过点P作弦MN,∠NPB=45゜.若AP=2,BP=6,求MN的长.

过点O作OD⊥MN于点D,连接ON,则MN=2DN,∵AB是⊙O的直径,AP=2,BP=6,∴⊙O的半径=12(2+6)=4,∴OP=4-AP=4-2=2,∵∠NPB=45゜,∴△OPD是等腰直角三角

已知如图,MN是圆O的弦,AB是圆O的直径,AB垂直于MN,垂足为点P,半径OC,OD分别交MN于点E,F,且OE等于O

∵0E=0F,∴△OEF是等腰△又AB⊥MN∴OP垂直平分底边EF,∴PF=PE∵MN是弦,AB是直径,且AB⊥MN∴AB垂直平分MN,即:pM=pNPm一pE=PN一PFME=FN再答:垂直于弦的直

如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,点P是直径MN上一个动点,则PA+P

过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,连接OB,OA′,AA′,∵AA′关于直线MN对称,∴AN=A′N,∵∠AMN=30°,∴∠A′ON=60°

如图,MN是⊙O的直径,弦AB、CD相交于MN上一点P,∠APM=∠CPM,证AB与CD关系.

证明:分别作AB.CD的中点E.F,连结OE.OF则由圆的性质可知:OE⊥AB,OF⊥CD因为∠APM=∠CPM,且∠APM=∠OPB,∠CPM=∠OPD所以∠OPD=∠OPB又OP是Rt△OPE与R

如图,AB是⊙O的直径,且AB=10,弦MN的长为8,若弦MN的两端在圆上滑动时,始终与AB相交,记点A、B到MN的距离

设AB、NM交于H,作OD⊥MN于D,连接OM.∵AB是⊙O的直径,且AB=10,弦MN的长为8,∴DN=DM=4,∵MO=5,∴OD=3.∵BE⊥MN,AF⊥MN,OD⊥MN,∴BE∥OD∥AF,∴

如图,MN是半圆O的直径,K是MN延长线上一点,直线

35度连接PN,设角NPQ=X,角NMQ=X(同弧所对圆周角)角K+X+90+40+X=180(90是因为直径对的圆周角,180是三角形KPM的内角和)求得X=15,所以角PMN=55,余角PNM=3

数学中考选择难题24 已知:如图,直线MN切⊙O于点C,AB为⊙O的直径,延长BA交直线MN于M点,AE⊥MN,BF⊥M

选D,(1)AE//DC//BF,AO=BO可得CE=CF,证三角形BCD、BDF全等可得CD=CF(2)证三角形ACE、CBF相似,可得CE•CF=AE•BF,而CE=CF=