如图,弧AB为圆O的1 4圆周,半径OA垂直OB,D为弧AB的三等分点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:28:01
如图,弧AB为圆O的1 4圆周,半径OA垂直OB,D为弧AB的三等分点
如图,AB为圆O的直径,CD为弦,且CD垂直AB,垂足为H,圆O的半径为4,CD=4倍根号三,圆周上到直线AC距离为3的

oc=4,ch=2根号3,所以oh=2,ah=6,ac=4根号3,如果连接ad的话,则三角形acd为等边三角形,圆周上到直线AC的距离相当于圆周上到直线DC的距离,因为oh=2,所以bh=2,ah=6

如图,圆O直径AB=4,C为圆周上一点,AC=2,过C作圆O切线L,过B作L垂线BD,D为垂点,BD交圆O于E

1.AB=4半径为2,即OA=OC=2又因为AC=2,所以三角形AOC是等边三角形角AOC=60度L为切线所以OC垂直于LBD也垂直于L,所以OC平行BD,角EBA=角AOC=60度OB=OE三角形B

如图,AB是⊙O的直径,C为圆周上一点,∠ABC=30°,⊙O过点B的切线与CO的延长线交于点D.

证明:(1)∵AB是⊙O的直径,∴∠ACB=90°,由∠ABC=30°,∴∠CAB=60°,又OB=OC,∴∠OCB=∠OBC=30°,∴∠BOD=60°,∴∠CAB=∠BOD.(2)在Rt△ABC中

如图已知点P在圆柱OO1的底面圆周上,AB为圆O的直径,

(1)证明:易知AP⊥BP,又由AA1⊥平面PAB,得AA1⊥BP,(2分)从而BP⊥平面PAA1,故BP⊥A1P;(5分)(2)延长PO交圆O于点Q,连接BQ,A1Q,则BQ∥AP,得∠A1BQ或它

圆o的半径是4,ab弧为圆周的1/3,则弦ab的长为

如图,AB弧为圆周1/3,则AB对应圆心角 ∠AOB=360/3=120度.图中半径、垂径、弦的一半组成的△AOC为一个含有60度的RT△,所以,弦的一半AC=半径AO*√3/2=2√3故,

如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周上不同于A、B的任意一点.

证明:(1)因为PA⊥平面ABC,且BC⊂平面ABC,所以PA⊥BC.又△ABC中,AB是圆O的直径,所以BC⊥AC.又PA∩AC=A,所以BC⊥平面PAC.(2)由(1)知BC⊥平面PAC,∵BC⊂

如图 已知AB是圆O的直径,C为圆周上一点,求证:∠ACB=90°

连结OC,∵OA,OB,OC都是圆的半径,∴△OAC和△OCB为等腰三角形;等腰△两底角相等,故有∠OAC=∠OCA,∠OBC=∠OCB;又∵三角形内角和为180°,∴∠ACB=∠OCA+∠OCB=9

如图,AB是圆O的直径,CD为弦,且CD⊥AB,当半径为4,CD为4倍根号3时,圆周上到直直线AC距离为3的点有多少

有两个l连接AC,OC,过点O作OE垂直于AC,垂足为E,AB垂直于CD,垂足为F.,因为OA=4=OC,CF=CD的一半,所以CF=2乘以根号3.所以OF=2,AF=4+2=6.然后可求OE=2,所

如图,在圆O中,AB是直径,C为圆周上一点,AC:BC=3:4,AB=10cm.角ACB的平分线交圆O于点D,连接AD,

/>1、设AC=3X∵AC:BC=3:4,AC=3X∴BC=4X∵直径AB∴∠ACB=90∴AC²+BC²=AB²∴9X²+16X²=100X=2(X

如图,AB是圆O的直径,CA垂直于圆O所在的平面,D是圆周上一点,求证∶BD垂直于CD

证明∵AB是直径∴AD⊥BD∵CA⊥面ADB∴CA⊥BDCA∩AD=A∴BD⊥面CAD∴BD⊥CD如果你认可我的回答,请点击“采纳回答”,祝学习进步!手机提问的朋友在客户端右上角评价点【评价】,然后就

如图,AB是圆O的直径,C为圆周上一点,BD是圆O的切线,∠ABC=30°,求∠DBC的度数

弧AC所对的劣弧的圆周角是30°由弦切角定理,∠DBC等于弧BC所对的弧的圆周角而劣弧BC等于半圆—弧AC所以劣弧BC所对的圆周角是60°所以∠DBC=60°或∠DBC=120°

九年级数学压轴题如下图,已知圆O的直径AB=10,有一动点C从A点沿圆周顺时针运动到B点.若点D为弧AC的三等分点,过点

(1)劣弧AD=45/180π×10/2=5/4π(2)弧AD=45º=∠AODDE⊥AB∴DE=tan45ºOD=5√2/2(3)∵⊙0的直径为AB∴∠ACB=90º∵

如图,AB是圆O的直径,C是圆周上一点,PA垂直于平面ABC,若AE垂直于PC,E为垂足,F是PB上任意一点,

答,如图证明∵AB是直径∴∠ACB=90°即BC⊥AC∵PA⊥面ABC∴PA⊥BCPA∩AC=A∴BC⊥面PAC∴BC⊥AE∵AE⊥PCPC∩BC=C∴AE⊥面PBC∵AE在面AEF内∴面AEF⊥平面

如图,已知PA垂直于圆O所在平面,AB是圆O的直径,C是圆周上一点,则图中面面垂直的共有几对?

图看不到没搞上来吧再问:图片不太清楚我知道有PAC⊥ABC,PAB⊥ABC,PAC⊥BPC,答案说是四对,另一对我找不出谢谢

如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周上不同于AB的点,若AB=2,PA=√3

因为PA⊥平面ABC所以:PA⊥AB,PA⊥AC所以:△ABP和△ACP都是直角三角形由已知得知:△ABC是直角三角形,且AC=1,BC=√3所以:由勾股定理求得PC=2,PB=√7,所以:在△PBC

如图,AB是圆O的直径,C是圆周上的一点,PA⊥平面ABC.

证明:1)因为:AB是圆O的直径,C是圆O上的一点所以:∠ACB=90°所以:AC⊥BC因为:PA⊥平面ABC所以:PA⊥BC所以:BC⊥平面PAC所以:BC⊥PC即有:PC⊥BC2)因为:PA⊥平面

如图,有一块半径为2的半圆形钢板,计划剪裁成等腰梯形ABCD的形状,它的下底AB是圆O的直径,上底CD的端点在圆周上.

(1)如图,作DE⊥AB于E,连接BD.因为AB为直径,所以∠ADB=90°.(1分)在Rt△ADB与Rt△AED中,∠ADB=90°=∠AED,∠BAD=∠DAE,所以Rt△ADB∽Rt△AED.(

如图,弦AB把圆周分成1:2的两部分,已知⊙O半径为1,求弦长AB.

∠AOB=(1/3)*360=120°由余弦定理Cos∠AOB=[2(r^2)-AB^2]/2(r^2)1/2=(2-AB^2)/2AB=√3

如图,AB是⊙O的直径,C为圆周上的一点,过点C的直线MN满足∠MCA=∠CBA.

(1)证明:连接OC,∵AB是⊙O直径,C为圆周上的一点,∴∠ACB=90°,即∠ACO+∠OCB=90°,∵OC=OB,∴∠OCB=∠OBC,又∠MCA=∠CBA,∴∠MCA=∠OCB,∴∠ACO+