如图,抛两点,yuy轴交于物线y=-x的平方-2x=3与x轴交于ab

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:07:46
如图,抛两点,yuy轴交于物线y=-x的平方-2x=3与x轴交于ab
如图,抛物线y=x^2+bx+c与x轴交于A(-1,0)和B(3,0)两点,交y轴于E.

第(1)问即求解b和c,将已知交点代入方程式得1-b+c=09+3b+c=0联立方程解得b=-2,c=-3.所以关系式为y=x^2-2x-3第(2)问其实解出D、E和F的坐标就可求得.x^2-2x-3

如图,抛物线y=1/2x²+3/2x-2与x轴交于A、B两点,与y轴交于C点。

(1)y=1/2(x²+3x-4)=1/2(x+4)(x-1)所以A:(1,0);B:(-4,0);C:(0,-2)(2)∵OA:OC=OC:OB=1/2、∠AOC=∠COB∴ΔAOC∽ΔC

如图PA、PB分别切圆O于A、B两点,直线OP交于圆O于D、E两点,交AB于点C.

(1)连结OA、OB,则OA⊥AP,OB⊥BP∴∠AOB=180°-∠APB=110°∠AQB=1/2∠AOB=55°(2)由切割线定理PA^2=PD*PE=PD*(PD+DE)可算得DE=6,∴圆的

如图抛物线y=-1/2x²+1/2x+6与x轴交于A,B两点,与y轴交于点C

记得拆那我啊……)我在《求解答网》帮你找到原题哦.以后不会的问题,就直接去求解答网,方便快捷,答案还详细.

如图,在平面直角坐标系中,M是x轴正半轴上一点,圆M与x轴交于A、B两点,与y轴交于C、D两点,A、D两点的坐标分别是(

(1)连接OC,∵A(-1,0),M(1,0),∴OM=1,OA=2=OC,∵∠MOC=90°,由勾股定理得:OC=根号下(MC的平方−OM的平方)=根号3,∴C的坐标是(0,根号3);(

如图,二次函数y=ax平方+bx+c的图像与x轴交于点B,C两点,与y轴交于点A

①由图可知,∵开口向上∴a>0∵对称轴x=-b/2a在y轴左侧∴即-b/2a<0∴b>0∵抛物线与y轴交点在x轴下方∴c<0②∵OA=3,∠ACB=60°,∠ABC=45°,OA⊥BC∴OB=3,0C

如图,抛物线y=x^2+2x-3与x轴的交于A,B两点,与y轴交于C点.

1、令y=0,则x^2+2x-3=0,(x+3)(x-1)=0,x1=-3,x2=1,B(-3,0),令x=0,y=-3,C(0,-3),2、由前所述,A(1,0),y=(x+1)^2-4,对称轴为x

如图,已知抛物线于X交于A(-1,0),E(3,0)两点,与Y轴交于点B(0,3).

y=-(x+1)*(x-3)D(1,4)不相似,AOB是直角三角形,DBE三边不构成直角

如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,

(1)点C的坐标(0,-3),|MC|^2=1+(m+3)^2,解得m=-1和m=-5(舍).设抛物线与x轴交点坐标(t,0),该点与圆心(1,-1)距离等于根号5,解这个方程得A(-1,0)、B(3

一道数学题:如图,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.

:易知:A(-1,0),B(1,0),C(0,-1);则OA=OB=OC=1,∴△ABC是等腰直角三角形,∴∠ACB=90°,AC=2;又∵AP∥BC,∴∠PAC=90°;易知直线BC的解析式为y=x

如图,已知抛物线y=-x平方+2x+3与x轴交于A、B两点,与y轴交于点C,连接BC.

(1)令Y=0  -X²+2X+3=0得X=3或X=-1∴A(-1,0)B(3,0)令X=0  则Y=3∴C(0,3)(2)设直线BC:Y=k

如图 抛物线y=-x2+2x+3与x轴交于A,B 两点,与 y轴交于点C,对称轴与抛物线交于点P,与直线BC 交于点M,

(1).y=-x²+2x+3=-(x²-2x)+3=-[(x-1)²-1]+3=-(x-1)²+4对称轴:x=1;顶点P(1,4);C(0,3);A(-1,0)

如图,抛物线y=-1/2x²+bx+c与x轴交于A,B两点,于y轴交于点C,且OA=2,OC=3,在抛

二次函数解析式y=-1/2x²+1/2x+3存在,设Q是抛物线对称轴上的一点,连接QA、QB、QE、BE,∵QA=QB,∴△BEQ的周长等于BE+QA+QE,又∵BE的长是定值∴A、Q、E在

如图 抛物线y=x2+bx+k与x轴交于A、B两点,与y轴交于点c(0,-3)

(1)k=-3,点A的坐标为([-b-√(b²+12)]/2,0),点B坐标为([-b+√(b²+12)]/2,0)(2)设抛物线y=x2+bx+k的顶点为M,求四边形ABMC的面

如图,抛物线y=ax²+bx+c交x轴于A、B两点,交y轴于点c,对称轴为直线x=1,

1.已知三点A(-1,0),B(3,0),C(0,-3),得到抛物线y=x²-2x-32.只有在∠APC为直角的时候,△APC周长最小,∠APC为直角,可以得到两个点,分别为(1,-1)(1

如图,已知抛物线y=x^2-1与x轴交于A,B两点,与y轴交于点C.

1,令Y=0得X^2-1=0∴X=±1∴A(-1,0),B(1,0)C(0,-1)2,直线BC解折式为Y=X-1故设AP解折式为Y=X+M将X=-1,Y=0代入0=-1+M∴M=1∴AP解折式为Y=X

如图抛物线y=ax2+bx+1与x轴交于两点A(-1,0)B(1,0),与y轴交于点C.

(1)y=-x²+1;(2)∵A(-1,0)C(0,1)∴AC:y=x+1;∵BD//CA∴设BD:y=x+b∵B(1,0)∴BD:y=x-1;∵D在抛物线上∴设D(x1,y1)(x1≠1)

如图:二次函数Y=-X2+ax+b的图象与x轴交与A(-1/2,0),B(2,0)两点,且于Y轴交与点C.(1)求该抛物

这个题目老师前2天刚讲过便宜你了我直接奉上标准解答!1)y=-x^2+3/2x+12)解析:∵函数图像与x轴交于点A(-1/2.,0),B(2,0),与y轴交于点C∴C(0,1)若ACBP四点为顶点的

如图,直线AB分别交x轴、y轴于A,B两点.

如图:两点确定一条直线.A(-1,0)绕原点O沿逆时针方向旋转90°得A1(0-1)B(0,2)绕原点O沿逆时针方向旋转90°得B1(-2,0)A1B1方程为: y2=-1/2x-1两直线垂