如图,抛物线C1y:x平方-2x-3于

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:32:30
如图,抛物线C1y:x平方-2x-3于
如图,抛物线y=x的平方与直线y=2x在第一象限内有一个交点A.

令x^2=2x  解得x=2 或x=0.由于第一象限,所以x不等于0.x=2时,y=4  所以A点坐标为(2,4)OA长度为2√5,若AOP为等腰三角

如图,抛物线y=-x平方+bx+c与x轴交与A(-1,0)B(-3,0)两点求该抛物线解析式该抛物线

按图抛物线应与x轴交于(1,0),(-3,0)y=-x²+bx+c=-(x-1)(x+3)=-x²-2x+3=-(x+1)²+4C(0,3),D(-1,4)对称轴:x=-

如图,抛物线y=x平方-2x-3,抛物线与x轴交予A,B两点A在左

y=x^2-2x-3=(x+1)(x-3)=0所以,A点坐标(-1,0),B点坐标(3,0)C点坐标:x=0是的y值即,C点坐标(0,-3)假设:P(x1,y1),当顶点P或G恰好落在Y轴上时,即有P

如图,抛物线y=-x的平方-2x+2,与y轴交与C点,点D为抛物线顶点,CE⊥OD交抛物线于E,求直线CE的解析式.

由y=-x²-2x+2,令x=0,得y=2,所以C点坐标为(0,2)又y=-x²-2x+2-(x²+2x-2)=-(x+1)²+3得抛物线的顶点坐标为(-1,3

如图,抛物线y=-x的平方+2x+3与x轴分别交于A,B两点,与y轴的正半轴交于C点,抛物线的顶点为D,连接BC,BD,

令Y=0,则X1=-1,X2=3所以A(-1,0)、B(3,0)令X=0,则Y=3所以C(0,3)D点横坐标为X=-2/(-2)=1,代入X=1,Y=4所以D(1,4)设直线BD解析式为Y=KX+B,

如图,抛物线y=-x平方+2x+3与x轴相交于A,B两点,与y轴交于C,顶点为D,抛物线的对称轴DF与BC相交于点E,与

这个题不是很难,主要考查了待定系数法求解析式,二次函数的交点,顶点坐标,对称轴,以及相似三角形的判定及性质,求得三角形相似是本题的关键做出来这一步,这个题就迎刃而解了,答案http://www.qiu

如图,抛物线y=1/2x的平方-1/2x-2经过c(3,1),b(0,2)在坐标轴上

带入Y=0,到抛物线y=1/2x2+3/2x-2,得X1=1,X2=-4,即坐标点A(-4,0),B(1,0)将点A带入直线y=-x+m,得m=4,则,直线y=-x-4,斜率k=-1,即直线与x轴的夹

如图,已知抛物线y=-1/2x平方+x+4交x轴的正半轴与点A,交y轴于点B

令y=0,的x=4或-2(舍去),故A(4,0)同理令x=0得y=4,故B(0,4).则直线ABx+y-4=0.(2)由题可得,要使直线AB与该正方形相加,只需直线AB与线段PQ有交点,(lz学过线性

如图,已知抛物线y=-1/2x平方+x+4交x轴的正半轴于点A,交y轴于点B

A(4,0)B(0,4)AB的解析式y=-x+4(2)2《=x《=4

如图,已知抛物线y=-x平方+2x+3与x轴交于A、B两点,与y轴交于点C,连接BC.

(1)令Y=0  -X²+2X+3=0得X=3或X=-1∴A(-1,0)B(3,0)令X=0  则Y=3∴C(0,3)(2)设直线BC:Y=k

如图 抛物线y=-x的平方+2x+3 交x轴于AB两点 (A在B的左侧)交y轴于点C 顶点为D.抛物线上有一点使∠PBA

答:y=-x²+2x+3=0x²-2x-3=0(x-3)(x+1)=0x=-1或者x=3点A(-1,0),点B(3,0),点C(0,3),点D(1,4)BC斜率Kbc=-1,CD斜

如图,对称轴为直线x=3的抛物线y=ax平方+2x与x轴交于点B、O

1.∵y=ax²+2x的对称轴是直线x=3,∴-2/2a=3a=-1/3∴y=-1/3x²+2x当x=3时y=-1/3*3²+2*3=3∴A(3,3)2.令对称轴与x轴交

如图,抛物线y=-x平方+ax+b与x轴交与a(-二分之一,0),b(2,0),而且与y轴交与c,

①将A(-1/2,0)B(2,0)代入y=-x²+ax+b中得{-1/4-1/2a+b=0-4+2a+b=0}联立解得a=3/2,b=1∴y=-x²+3/2x+1.令x=0得y=1

如图,抛物线y1=-x²+2向右平移1个单位得到抛物线y2.

向上(1,^2)再问:不会啊,过程再问:不会啊,过程再答: 再答:刚才那里我漏了个负号再问:解析式怎么求

如图,P是抛物线y=-x的平方+x+2在第一象限

y=-x²+x+2,那么半个周长=x+y=-x²+x+2+x=-x²+2x+2=-(x²-2x+1)+3=-(x-1)²+3,所以当x=1时周长最大,

如图,将抛物线y=-二分之一(x-1)的平方+二分之九与x轴交于A,B,点C(2,m)在抛物线上

如图,由解析式得B(4,0)C(2,4)①若BC为底边,BC的中垂线交Y轴于P2,可得P2(0,1、2)②若BC为腰,C为顶角顶点,以点C为圆心,CB为半径画圆,和y轴有两个交点(0,0)、(0,8)

如图,已知抛物线y=-x平方,将抛物线向上平移后,抛物线顶点D和抛物线与x轴的两个交点A、B围成△ABD,求顶点在什么位

假设B是函数平移后与X轴的右交点△ABD是等边三角形,则OD=√3OB设函数Y=-X²向上平移后解析式为:Y=-X²+C此时函数与X轴交点,代入Y=0X=±√C因为C大于O,因此O