如图,抛物线y=ax方 bx-三分之五经过点A(1,0)和点B(5,0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:55:15
如图,抛物线y=ax方 bx-三分之五经过点A(1,0)和点B(5,0)
某抛物线y=ax+bx+c的形状如图,则一元二次方程ax+bx+c=0的解集

再问:当一元二次方程>和小于0的解集呢再答:再答:采纳一下好吗?再答:我冲5级呢?谢谢了再答:不好意思2全改成3就对了。

如图,在平面直角坐标系中,抛物线y=ax²+bx+c=0经过A(-2,-4)B(0,-4),C(2,0)三点

对称轴x=-1,所以b=2a,代入点坐标c=-4,a=1/2,b=1所以y=0.5x^2+x-4联结OA,与对称轴交于点M,则点M为所求AM+OM=|OA|=2√5

1已知:抛物线y=ax的方+bx+c,(b>0,c

4a分之4ac-b方=0又因为b+ac=3所以b=2或-6因为b>0所以b=2后面还要讨论.有点烦..

已知,如图,抛物线y=ax^2+bx+c经过原点(0,0)和A(1,-3),B(-1,5)三点

1)因为过原点,所以C=0,又因为过A(1,-3),B(-1,5),得出解析式y=x^2-4x2)C点坐标(4,0),所以⊙M半径为2,因为MD^2+ED^2=OM^2+OE^2,所以ED=OE,四边

如图,已知抛物线y=ax方+bx+c经过A(-2 0)B(0,-4)C(2 -4)三点且与x轴的另一交点为e

1将A(-20)B(0,-4)C(2-4)代入y=ax²+bx+c得{4a-2b+c=0……①c=-4……②4a+2b+c=-4……③③-①,得4b=-4b=-1把b=-1,c=-4代入①,

如图已知抛物线y=ax^2+bx+c经过A(-3,0)B,(1,0)C(0,3)三点

∵点A关于点B对称∴对称轴:直线x=-1∴点C(0,3)关于(-2,3)∴把点B,C和(-2,3)带入解析式中得:{C=3a+b+c=04a-2b+c=3}解得:{a=-1b=-2c=3}∴y=-x&

如图,已知抛物线y=ax^2+bx+c(b>0,c

因为抛物线的顶点在x轴上,所以b^2-4ac=0,所以ac=b^2/4,代入b+ac=3,解得b=2(b=-6不合题意舍去);  因为ac=1,c

如图,已知抛物线y=ax²+bx+c经过A(4,0),B(2,3),C(0,3)三点.求抛物线的解析式

1、抛物线的解析式为y=-3/8x²+3/4x+3对称轴为x=12、A点关于x=1的对称点为D(-2,0),直线BD的方程为3x-4y+6=0,它交直线x=1于M(1,9/4),此点为所求

已知抛物线y=ax方+bx+c满足以下条件,求函数的表达式

(1)、由题意得方程组a+b+c=0;c=-3;-(b/2a)=2解得a=-1,b=4,c=-3所以解析式为y=-x的平方+4x-3

如图,已知抛物线y=ax²+bx+c经过A(-3,0),B(1,0),C(0,3)三点,其顶点

第一题为2013雅安中考题:分析:(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可;(2)根据BC是定值,得到当PB+PC最小时,△PBC的周长最小,根据点的坐标求得相应线段的长即可

如图,二次函数y=ax²+bx+c,经过图像ABC三点.观察图像,写出A.B.C三点坐标,并求出抛物线关系式

晕,找到三个点的座标,代入二次函数和到关于abc的三元一次方程组.解出abc就可以了.

如图,抛物线y=ax²+bx+c 的顶点为P(-2,2)

先将y=ax²+bx+c改为y=a(x+k)²+c将顶点(-2,2)带入方程,得y=a(x+2)²+2在将点A带入方程3=a(0+2)²+2解a=4/1从题意得

如图,抛物线y=ax²+bx+c经过A(-1,哦),B(3,0),C(0,3)三点,对称轴与抛物线相交

1.将A,B,C三点,分别代入抛物线方程,得:0=a-b+c0=9a+3b+c3=c所以得出:a=-1,b=2,c=3∴抛物线解析式为y=-x²+2x+32.存在,Q有3个坐标设Q到直线MB

如图,已知抛物线y=ax^2+bx+c经过点A(-2,0)、B(4,0)、C(0,4)三点.

将A(-2,0)、B(4,0)、C(0,4)分别代入y=ax^2+bx+c中,得到关于a,b,c的三元一次方程组,解这个方程组得:a=-1/2,b=1,c=4所以:此抛物线的解析式为y=(-1/2)x

如图,抛物线y=ax²+bx+c,其顶点坐标为(1,3),则方程ax²+bx+c=3根的情况是?

方程ax²+bx+c=3理解为抛物线ax²+bx+c和直线y=3的交点很显然只有一个x=1

如图,抛物线y=ax²+bx-4a经过A(-1,0)

解题思路:分析抛物线过两点,由待定系数求出抛物线解析式;根据D、E中点坐标在直线BC上,求出D点关于直线BC对称点的坐标;有两种方法:法一作辅助线PF⊥AB于F,DE⊥BC于E,根据几何关系,先求出t

抛物线y=ax方+bx+c(a≠0)图像经过原点,则

抛物线y=ax方+bx+c(a≠0)图像经过原点c=0对称轴x=-b/2ay=ax方+bx=a(x+b/2a)²-b²/4a²顶点坐标(-b/2a,-b²/4a