如图,抛物线y=ax² bx-5

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:42:32
如图,抛物线y=ax² bx-5
如图抛物线y=ax²+bx+c的对称轴是x=1,下列结论

答:抛物线开口向上,a>0抛物线y=ax^2+bx+c的对称轴x=-b/(2a)=1,b=-2a0,3a+c>0所以:(a+c)^2-b^2=(a+c)^2-4a^2=(a+c-2a)(a+c+2a)

某抛物线y=ax+bx+c的形状如图,则一元二次方程ax+bx+c=0的解集

再问:当一元二次方程>和小于0的解集呢再答:再答:采纳一下好吗?再答:我冲5级呢?谢谢了再答:不好意思2全改成3就对了。

如图,抛物线y=ax^2+bx+c与x轴的一个交点A在点(

问题补充:如图,抛物线y=ax^2+bx+c与x轴的一个交点A在点(-2,0)和(-1,0)之间(包括这两点),顶点C是矩形DEFG上(包括边界和内部)的一个动点,则a的取值范围a的取值范围是-0.7

如图抛物线,y=ax^2+bx+2交x轴于A(-1,0),B(4,0)两点.

抛物线x轴于A(-1,0),B(4,0)两点,可以表达为y=a(x+1)(x-4)=ax²-3ax-4a-4a=2a=-1/2y=-(x+1)(x-4)/2其余题目不清楚,没法做再问:再答:

已知,如图,抛物线y=ax^2+bx+c经过原点(0,0)和A(1,-3),B(-1,5)三点

1)因为过原点,所以C=0,又因为过A(1,-3),B(-1,5),得出解析式y=x^2-4x2)C点坐标(4,0),所以⊙M半径为2,因为MD^2+ED^2=OM^2+OE^2,所以ED=OE,四边

如图,已知抛物线y=ax^2+bx+c(b>0,c

因为抛物线的顶点在x轴上,所以b^2-4ac=0,所以ac=b^2/4,代入b+ac=3,解得b=2(b=-6不合题意舍去);  因为ac=1,c

如图,已知抛物线y=ax²+bx+c经过A(4,0),B(2,3),C(0,3)三点.求抛物线的解析式

1、抛物线的解析式为y=-3/8x²+3/4x+3对称轴为x=12、A点关于x=1的对称点为D(-2,0),直线BD的方程为3x-4y+6=0,它交直线x=1于M(1,9/4),此点为所求

如图,抛物线y=-ax²+3ax+2.

答:抛物线方程y=-ax^2+3ax+2=-a(x-3/2)^2+2+9a/4所以抛物线对称轴x=3/2,故点C一定在对称轴的右侧.令x=0,y=2,所以点A(0,2)令y=-ax^2+3ax+2=0

如图,抛物线y=ax²+bx+c 的顶点为P(-2,2)

先将y=ax²+bx+c改为y=a(x+k)²+c将顶点(-2,2)带入方程,得y=a(x+2)²+2在将点A带入方程3=a(0+2)²+2解a=4/1从题意得

如图,抛物线y=ax²+bx+c经过A(-1,哦),B(3,0),C(0,3)三点,对称轴与抛物线相交

1.将A,B,C三点,分别代入抛物线方程,得:0=a-b+c0=9a+3b+c3=c所以得出:a=-1,b=2,c=3∴抛物线解析式为y=-x²+2x+32.存在,Q有3个坐标设Q到直线MB

如图,抛物线y=ax²+bx(a>0)经过原点O和点A(2,0) 1.求抛物线的对称轴.2.点

1,首先抛物线过原点又过点(2,0)所以对称轴即为x=12,又a>0故而抛物线开口向上故而对于x1<x2<1有y2<y13,由题意知C(3,2)A(2,0)故而所求函数即为y=2x-4要分数急用感激万

如图,抛物线y=ax²+bx+c的对称轴是x=2与x轴交点,分别为位于(-1,0)(4,5)内,a

选A由对称轴x=2可知,-b/2a=2得到a=-b/4又因为交点落在(-1,0)中间,代入得c>0,a-b+c

如图抛物线y=ax的平方+bx+c(a>0)与x轴交于A(1,0),B(5,0)两点,与y轴交于点M,抛物线顶点为P,且

1)过P作PQ⊥x轴,Q为垂足则Q点坐标为(3,0)|BQ|=5-3=2所以,|PQ|=√(PB^2-BQ^2)=√(20-4)=±4a>0,开口向上,所以,P在x轴下方,所以,P点坐标为:(3,-4

如图,抛物线y=ax²+bx+c,其顶点坐标为(1,3),则方程ax²+bx+c=3根的情况是?

方程ax²+bx+c=3理解为抛物线ax²+bx+c和直线y=3的交点很显然只有一个x=1

如图,抛物线y=ax²+bx-4a经过A(-1,0)

解题思路:分析抛物线过两点,由待定系数求出抛物线解析式;根据D、E中点坐标在直线BC上,求出D点关于直线BC对称点的坐标;有两种方法:法一作辅助线PF⊥AB于F,DE⊥BC于E,根据几何关系,先求出t

抛物线y=ax^2+bx+c的图像如图,则下列结论 .其中正确的结论是

首先(1,2)是这个抛物线上的点,所以代入y=ax^2+bx+c得:a+b+c=2所以④a+b+c=2正确.其次对称轴是-1/2,那么-b/2a=-1/2,所以a=b,抛物线开口向上,所以a>0,又a