如图,椭圆上的点中a1与焦点f1的距离最近,且a1f1=2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:25:29
这个不难嘛.设椭圆焦点A、B,椭圆上某点P,|PA|=r1,|PB|=r2,|AB|=2c.我们要求使得|PA|最小的P点.已知:r1+r2=2a;r2-r1=a+c,等号成立当且仅当P在长轴上.
如图所示,设椭圆的左焦点为F′,∵以椭圆短轴为直径的圆与线段PF相切于线段PF的中点,∴切点E为PF的中点,OP=OF=OF′,∴FP⊥F′P.设|PF|=n,|PF′|=m,则m+n=2a,m2+n
(1)∵椭圆y24+x23=1的下焦点F(0,-1),点P在椭圆上,且点P位于y轴右侧,∴PF∥l时,P点坐标为P(x,-1),(x>0),把P(x,-1)(x>0)代入椭圆y24+x23=1,得14
字母太多也不好写分式,只给个思路吧.先设椭圆的标准方程(在x轴上的).由截距式直接写出直线A1B2、B1F的方程,然后联立方程求出点T的坐标.接着由中点坐标公式,写出中点M的坐标,代入椭圆方程,化解,
【1】请画一个图.可设椭圆方程为(x/a)+(y/b)=1.(a>b>0).F(-C,0)为左焦点.P点在椭圆上,线段PF的中点为M,则PM=FM,圆x+y=b与线段切于点M,则MO=b,又显然有FO
设线段PF的中点为M,另一个焦点F′,由题意知,OM=b,又OM是△FPF′的中位线,∴OM=12PF′=b,PF′=2b,由椭圆的定义知 PF=2a-PF′=2a-2b,又 MF
①c=3椭圆上任意一点到焦点的距离即焦半径根据第二定义有R/(a²/c-x)=c/a即R=a-cx/a当x=-c时R有最大值a+c=8C:x²/25+y²/16=1②由椭
记线段PF1的中点为M,椭圆中心为O,连接OM,PF2则有|PF2|=2|OM|,2a-2c2−b2=2b,a-2c2−a2=a2−c2,1-2e2−1=1−e2,解得e2=59,e=53.故选A.
设椭圆方程为x²/a²+y²/b²=1(a>b>0)由e=√3/2,得a=2b,c=√3b,则椭圆方程化为x²/4b²+y²/b&
/>F与椭圆上的点的距离的最大值为M,最小值为m则M=a+c,m=a-c∴(M+m)/2=a则椭圆上与点F的距离等于(M+m)/2的点是短轴的两个端点.再问:是(0,±b)么亲!再答:没错,就是这个答
由题意知菱形的边长为c,由椭圆的对称性知N点的横坐标为c2,由于ON=c,故c24+y2=c2,解得点N的纵坐标为32c,则NF=(3c2)2+(c2+c)2=3c又由椭圆的对称性知点N到右焦点的距离
解题思路:先根据离心率求出a,b,c的关系.再根据b点坐标,求出圆C坐标.利用点到直线公式,把C点坐标带入直线方程.可求出椭圆方程中的参数.
设椭圆方程为x^2/a^2+y^2/b^2=1直线方程为y=x-c联立消去y得(a^2+b^2)x^2-2ca^2x+a^2(c^2-b^2)=0OA+OB=OC所以设c(x,y)x1+x2=xy1+
椭圆x²/6+y²/2=1,a=√6,b=√2,c=√(a²-b²)=√(6-2)=2,左焦点F1(-2,0)抛物线y²=2mx的焦点F与椭圆左焦点重
将F(-c,0)代入x^2/a^2+y^2/b^2=1得y=±b^2/a∴PF=b^2/a∵PO//BA∴PF/OF=OBOA∴b^2/ac=b/a∴b=c∵a^2=b^2+c^2∴e=c/a=√2/
设椭圆方程为x^2/a^2+y^2/b^2=1,F(c,0)对椭圆进行压缩变换,x'=x/a,y'=y/b椭圆变为单位圆:x'^2+y'^2=1,F->F'(c/a,0)【书写方便,变换后图形中字母仍
(一)可设椭圆的方程为(x²/a²)+(y²/b²)=1.(a>b>0)由题设可知,右焦点F在原点和右顶点的中间,∴a=2c,再由椭圆的定义知,2a=4.∴a=
F与椭圆上点的最大值,最小值分别为m,n由椭圆图像可知右焦点到左顶点是最大值右焦点到右顶点是最小值m=a-cn=a+c(m+n)/2=a即椭圆与点F的距离等于a的点是上顶点(0,b)和下顶点(0,-b
(1)焦点为F(c,0),AB斜率为b/a,故CD的方程为y=b(x-c)/a.与椭圆联立后消去y,得2x²-2cx-b²=0CD的中点为G(c/2,-bc/2a),点E(c,-b
解题思路:本题主要是考查了曲线方程与直线之间的关系。解题过程: