如图,正三角形ABC的外接圆半径为6,求三角形ABC的边长,边心距和面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 17:07:28
如图,正三角形ABC的外接圆半径为6,求三角形ABC的边长,边心距和面积
如图,圆0既是正△ABC的外接圆,又是正△DEF的内切圆,则内、外两个正三角形的相似比是

是1:2设圆的半径为R,则外正三角形的高为3R,内三角形的高为3/2R(3/2):3=1:2再问:我算起来也是1:2,为什么答案上是1:4啊再答:1:2是相似线段的比例,1:4是面积的比例再问:肯定是

若正三角形ABC的外接圆的半径为r则三角形面积为?

三角形ABC为等边三角形时,它的面积最大.它的面积为三角形的边*高/2边=√[R^2+(R/2)^2]*2=√5*R高=R+R/2=3/2R面积=√5R*3/2R/2=3/4*√5*R^2r=a/2/

数学题若正三角形ABC的边长为a,则他的外接圆面积是

 = a/2 /sin60度  =  (根号3)a/4外接圆面积 S =  3.14&nb

如图,已知三角形ABC,AB=AC=5,BC=6,求三角形ABC的外接圆半径.

先过A作BC边上的高垂足为D求出高为4因为三角形是等腰的所以外接圆的圆心必定在这高上先在高上随便取一点设为O连接OB则OB为半径设为ROD=AD-AO=4-RBD=3所以R就等于√(4-R)2+9所以

已知正三角形ABC的外接圆半径为R,内切圆半径

作出正三角形ABC的圆心O,连接OA,过点O做OM⊥AB,交点为M,则OA=R,MO=内切圆半径r正三角形∠OAM=30ºsinOAM=MO/OA=r/R=sin30º=1/2∴内

如图,已知ABC的三条高AD、BE、CF交于点H.求证BHC的外接圆与ABC的外接圆是等圆

连BG,CG在直角三角形BHD和直角三角形AHE中,∠AHE=∠BHD(对顶角相等),∠HBD=90度-∠BHD,∠HAE=90度-∠AHE,∠CAH=∠HBD,∠CAG=∠CBG(同弧圆周角相等),

如图,正三角形ABC外接圆的半径为R,求正三角形ABC的边长,边心距,周长和面积.

正弦定理a/sinA=2R(R为外接圆的半径)边长为aa=2R*sin60°=√3*R边心距d是外接圆半径的一半d=R/2周长=3√3*R面积S=3*边长*边心距/2=3√3*R^2/4

如图,正三角形abc的外接圆半径是m,内有正六边形defghr,求正六边形的周长

知道是正六边形了,知道是正三角形了,说明三个小三角形全等,又说明了正六边形的周长为三角形的两天变,连接AO,过目点垂直于AC交于O1,OO1=1/2m,求出AO1,4AO1就是答案

1、已知正三角形ABC外接圆的半径为R,求正三角形的边长、边心距、周长和面积.(全班过程)

连接圆心O和A点成OA,过O点作垂线垂直于AB,垂足为D由题得OA平分∠BAC,D为AB的中点在△OAD中,∠BAO=30°,∠ODA=90°,∠DOA=60°OA=R,所以OD=R/2;DA=R*√

如图,已知△ABC为正三角形,它的外接圆半径为4cm,四边形BCDE为正方形,求正方形的面积

过圆心O作OF⊥BC于F∵△ABC为正三角形∴∠BAC=60∴∠BOC=2∠BAC=120∵OB=OC,OF⊥BC∴BF=CF=BC/2,∠BOF=∠COF=∠BOC/2=60∴BF=OB×√3/2=

已知正三角形abc边长等于根号3,点p在其外接圆上运动,则pa×pb的最大值是

∠APB=60°,AB²=PA²+PB²-2PA*PBcos60°=PA²+PB²-PA*PB>=2PA*PB-PA*PB=PA*PB当且仅当PA=P

如图,已知三角形ABC,过点A作外接圆的切线,详情见下

过D作DF∥PB交AB于F.∵PA切⊙O于A,∴由切割线定理,有:PA^2=PC×PB,∴PA/PB=PC/PA,又PC/PA=√2/2,∴PA/PB=√2/2,∴(PA/PB)(PC/PA)=1/2

已知:如图,圆O是三角形ABC的外接圆,角ACO=30度.求角ABC的度数

角ABC=60过O作OD⊥AC于D可得∠DOC=60∠AOC=120∠ABC=60(同一弧长所对的圆周角等于圆心角的一半)

已知M是正三角形ABC外接圆上的任意一点,求证;|MA|^2+|MB|^2+|MC|^2为定值

解题思路:用坐标法证明即可,以三角形ABC的中心为原点,平行于三角形一边为坐标横轴,设正三角形ABC的外接圆方程为X^2+Y^2=R^2,解题过程:解:以三角形ABC的中心为原点,平行于三角形一边为坐

如图,求正三角形ABC的内切圆与外接圆的面积之比

正三角形ABC的内切圆与外接圆的面积之比=半径比的平方两半径在同一个直角三角形中,且有一角为30度,比1/2所以正三角形ABC的内切圆与外接圆的面积之比为1/4

已知正三角形ABC的边长为6,求它的内切圆和外接圆面积

正三角形ABC的边长为6那么高是h=√(6^2-3^2)=3√3所以内切圆半径是r=h/3=√3外接圆半径是R=2h/3=2√3所以它的内切圆是S=πr²=3π外接圆面积是S=πR²

如图已知三角形ABC中,CD是高,1.请用圆规与直尺作出△ABC的外接圆

1,以CD为半径,A、B、C为圆心画圆,⊙A、⊙C交于M、N,⊙B、⊙C交于P、Q连接MN、PQ,MN交PQ于O,以O为圆心,OC为半径画圆,⊙O即为△ABC的外接圆2,作OE⊥AC于E,延长OE交⊙