如图,正方形ABCD四个边顶点分别在EFGH的四条边上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 20:59:37
如图,正方形ABCD四个边顶点分别在EFGH的四条边上
如图,正方形ABCD的四个顶点分别在四条平行线L1、L2、L3、L4上,这四条直线中相邻两条之间的距离依次为

(1)设AD、BC与l2、l3相交于点E、F.由题意知四边形BEDF是平行四边形,∴△ABE≌△CDF(ASA).∴对应高h1=h3.(2)过B、D分别作l4的垂线,交l4于G、H(如图),易证△BC

如图,P为正方形ABCD所在平面外一点,且P到正方形的四个顶点距离相等,E为PC中点,求

E为PC中点PD=PCDE垂直PC同理BE垂直PCPC垂直面BDE面PAC垂直面BDE

如图,已知正方形ABCD的边长是15厘米,长方形EFGH的四个顶点三等分正方形的每条边,问长方形EFGH的面积是多少?

由题意可得:AE=AH=CG=CF=13AD=13×15=5(厘米),DH=DG=BF=BE=23AD=23×15=10(厘米),所以长方形EFGH的面积是:15×15-10×10-5×5,=225-

如图,正方形ABCD的四个顶点分别在四条平行线l1,l2,l3,l4上,这四条平行线中相邻

证明1)分别过左右两个顶点作平行线的垂线,则在正方形外围着四个全等的直角三角形,直角三角形的直角边长分别为h1和h2+h3其中(h1=h3),所以整个图形为一个大正方形面积为(h1+h2+h3)^2,

如图,abcd为矩形的四个顶点…

设运动ts后PQ距离为10,所以AP=3t,CQ=2t,即DQ=16-2t.所以QE为16-5t有知AD=PE=6.所以三角形PEQ中用勾股定理可解得t值

如图,两个边长都为1的正方形,正方形EFGO的顶点O是正方形ABCD的中心

1利用割补法,两个正方形重叠部分的面积为12、方法相同,面积是1

如图,正方形的边长为8厘米,分别以这个正方形的四个顶点为.

用正方形的面积减去圆形的面积8*8-3.14*4*4=64-50.24=13.76不知道你说的阴影部分是不是正方形中间的那一部分呢?如果是就是这么算了

(有图)正方形ABCD的四个顶点A,B,C,D

1、正方形ABCD垂直于平面EFG,DA⊥AB,CB⊥AB,DA⊥平面EFG,BC⊥平面EFG,BC∈平面GFH,DA∈平面HFE,平面GHF⊥平面EFG,平面EHF⊥平面EFG,平面GHF∩平面EH

已知:如图,正方形abcd的对角线ac、bd相交于点o;正方形abcd的顶点

简单因为OBC和OCD为等腰三角形E为BC中点所以角OEC=90所以角OFC=360-270=90因为OCD与等腰三角形三线合一,F为CD中点

如图,已知正方形ABCD的边长为4,折叠正方形ABCD,使顶点C与AB边的中点M重合,求折痕EF的长度

设CF=MF=X,BF=4-X,MB=2MB^2+BF^2=MF^24+(4-X)^2=x^24+X^2-8X+16=x^2x=2.5连结MC交EF于N,延长FE,CD交于Ptan∠CPF=tan∠F

如图1,正方形ABCD与正方形CEFG的顶点C重合,

(1)、由BC=BD,CE=CG,∠BCE=∠DCG=90°+α,可证⊿BCE≌⊿DCG,得∠EBC=∠GDC;记BE与DC的交点为M,在⊿BMC与⊿DMP中,据∠EBC=∠GDC;∠BMC=∠DMP

如图,圆内接一个边长为a的正方形ABCD,分别以正方形各边为直径向正方形外作半圆,则四个半圆与正方形外接

大圆面积=π*(a/√2)²=a²π/2正方形面积=a²小半圆面积=(1/2)*π*(a/2)²=a²π/8∴所求阴影部分面积=4*小半圆面积+正方形

如图,正方形网格中的每一个小正方形的边长都是 1 ,四边形 ABCD 的四个顶点都 在格点上,O为AD边的中点

旋转多少度没有指明,设想为90°.OC=√5,弧CC‘=1/2C圆=1/4*2π*√5=√5π/2.

如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O为坐标原点,且为AD边的中点,若把

如图,图在哪再问:没图,你会做吗?再答:太小看我了吧紫色为旋转后的图形,c点坐标不用说了吧,(2,-1)再问:确定图没画错吗?旋转180°再答:我仔细看了一下,弄错了,对不起。c点坐标应该为(2,1)

如图,正方形ABCD的边长为4厘米,P、Q两动点从正方形ABCD的顶点A同时沿正方形的边开始移动

1、P、Q相遇,说明两点走的路程相加是正方形的周长.即t+4*t=16,t=3.2s2、一次相遇是走过了一个正方形周长,4次相遇就是4个正方形的周长.即(1+a)*16=4*16,a=33、第2013

如图,正方形ABCD的四个顶点分别在四条平行线l1,l2,l3,l4上,

(1)分别过左右两个顶点作平行线的垂线,则在正方形外围着四个全等的直角三角形,直角三角形的直角边长分别为h1和h2+h3其中(h1=h3),所以整个图形为一个大正方形面积为(h1+h2+h3)^2,所

如图,在正方形ABCD中,以A为顶点

图在哪证明:延长CB到M,使BM=DF,连接AM.∵AB=AD,∠ABM=∠D=90°∴△ABM≌△ADF(SAS)∴AM=AF,∠BAM=∠DAF.∴∠BAM+∠BAE=∠DAF+∠BAE=∠DAB

如图,正方形ABCD的四个顶点落在边长为4的正方形EFGH的四条边上,设AE=X

y=x²+(4-x)²=2x²-8x+16(0再问:应该是y²=x²+(4-x)²吧?再答:正方形ABCD的面积代表符号是Y,所以是Y=x&

已知:如图,有四个动点P、Q、E、F分别从正方形ABCD的四个顶点出发,沿着AB、BC、CD、DA以同样的速度向B、C、

1、四边形PQEF是正方形.证明的思路:四个小直角三角形全等,得知四条斜边相等,所以:四边形PQEF是棱形;由四个小直角三角形全等得∠APF=∠PQB,所以:∠APF+∠QPB=90°.所以:∠FPQ